2. Специальная часть
2.1 CISC и RISC архитектура процессора
Двумя основными архитектурами набора команд, используемыми компьютерной промышленностью на современном этапе развития вычислительной техники, являются архитектуры CISC и RISC. Основоположником CISC-архитектуры – архитектуры с полным набором команд (CISC – Complete Instruction Set Computer) можно считать фирму IBM с ее базовой архитектурой IBM/360, ядро которой используется с 1964 г. и дошло до наших дней, например, в таких современных мейнфреймах, как IBM ES/9000.
Лидером в разработке микропроцессоров с полным набором команд считается компания Intel с микропроцессорами X86 и Pentium. Это практически стандарт для рынка микропроцессоров.
Простота архитектуры RISC-процессора обеспечивает его компактность, практическое отсутствие проблем с охлаждением кристалла, чего нет в процессорах фирмы Intel, упорно придерживающейся пути развития архитектуры CISC. Формирование стратегии CISC-архитектуры произошло за счет технологической возможности перенесения "центра тяжести" обработки данных с программного уровня системы на аппаратный, так как основной путь повышения эффективности для CISC-компьютера виделся, в первую очередь, в упрощении компиляторов и минимизации исполняемого модуля. На сегодняшний день CISC-процессоры почти монопольно занимают на компьютерном рынке сектор персональных компьютеров, однако RISC-процессорам нет равных в секторе высокопроизводительных серверов и рабочих станций.
Основные черты RISC-архитектуры с аналогичными по характеру чертами CISC-архитектуры отображаются следующим образом (табл.1):
Таблица 1.Основные черты архитектуры
CISC- архитектура | RISC-архитектура |
Многобайтовые команды | Однобайтовые команды |
Малое количество регистров | Большое количество регистров |
Сложные команды | Простые команды |
Одна или менее команд за один цикл процессора | Несколько команд за один цикл процессора |
Традиционно одно исполнительное устройство | Несколько исполнительных устройств |
Одним из важных преимуществ RISC-архитектуры является высокая скорость арифметических вычислений. RISC-процессоры первыми достигли планки наиболее распространенного стандарта IEEE 754, устанавливающего 32-разрядный формат для представления чисел с фиксированной точкой и 64-разрядный формат "полной точности" для чисел с плавающей точкой. Высокая скорость выполнения арифметических операций в сочетании с высокой точностью вычислений обеспечивает RISC-процессорам безусловное лидерство по быстродействию в сравнении с CISC-процессорами.
Другой особенностью RISC-процессоров является комплекс средств, обеспечивающих безостановочную работу арифметических устройств: механизм динамического прогнозирования ветвлений, большое количество оперативных регистров, многоуровневая встроенная кэш-память.
Организация регистровой структуры – основное достоинство и основная проблема RISC. Практически любая реализация RISC-архитектуры использует трехместные операции обработки, в которых результат и два операнда имеют самостоятельную адресацию – R1 : = R2, R3. Это позволяет без существенных затрат времени выбрать операнды из адресуемых оперативных регистров и записать в регистр результат операции. Кроме того, трехместные операции дают компилятору большую гибкость по сравнению с типовыми двухместными операциями формата "регистр – память" архитектуры CISC. В сочетании с быстродействующей арифметикой RISC-операции типа "регистр – регистр" становятся очень мощным средством повышения производительности процессора.
Вместе с тем опора на регистры является ахиллесовой пятой RISC-архитектуры. Проблема в том, что в процессе выполнения задачи RISC-система неоднократно вынуждена обновлять содержимое регистров процессора, причем за минимальное время, чтобы не вызывать длительных простоев арифметического устройства. Для CISC-систем подобной проблемы не существует, поскольку модификация регистров может происходить на фоне обработки команд формата "память – память".
Существуют два подхода к решению проблемы модификации регистров в RISC-архитектуре: аппаратный, предложенный в проектах RISC-1 и RISC-2, и программный, разработанный специалистами IВМ и Стэндфордского университета. Принципиальная разница между ними заключается в том, что аппаратное решение основано на стремлении уменьшить время вызова процедур за счет установки дополнительного оборудования процессора, тогда как программное решение базируется на возможностях компилятора и является более экономичным с точки зрения аппаратуры процессора.
... AVR Studio запомнит расположение окон и использует эти установки при следующем запуске проекта. 3.2. Анализ методики реализации разработки программного обеспечения 3.2.1. Классификация вариантов заданий Цель заданий – практическое освоение методики программирования на ассемблере микроконтроллеров ATMEL семейства AVR, отладка программы на симуляторе AVR Studio и программирование кристалла с помощью ...
... напряжения. У ЦАП с токовым выходом этот параметр в большой степени зависит от типа выходного ОУ. Виды ЦАП Существуют последовательные и параллельные ЦАП. Последовательные –- используются в микропроцессорных системах, если не требуется высокое быстродействие. Среди параллельных - наиболее просты ЦАП с суммированием весовых токов Большинство схем параллельных ЦАП основано на суммировании ...
... Например, можно предложить классификацию, изображенную на рис. 1.13. Более определенно типы ТСО будут рассмотрены в последующих главах. Отметим лишь, что при выборе СО следует выяснять, каковы основные тактико-технические характеристики. Например, для особо важных объектов желательно, чтобы вероятность обнаружения СО была близка к 0.98; наработка на ложное срабатывание - к 2500 ч и к 3500 ...
... , 2 приложения. детекторная головка, измерительная часть, схема управления, система автокалибровки, микроконтроллер, коэффициент усиления, измерение, диод Шоттки. Работа выполнена с целью создания аппаратной части системы автокалибровки и измерения скалярных параметров СВЧ устройств (программная часть системы разрабатывается в рамках курсового проекта по курсу “Автоматизированное управление в ...
0 комментариев