3.2 Определение закона изменения внешнего момента, обеспечивающего постоянство угловой скорости

При действии внешнего момента , обеспечивающего равномерное вращение механической системы вокруг шарнира , последнее слагаемое в левой части равенства (3.1.9) обращается в нуль:

, ; отсюда .

Тогда выражение (3.1.9) примет вид:

 (3.2.1)

 направлен противоположно главному моменту внешних сил, то есть, против часовой стрелки.

Внешний момент, обеспечивающий равномерное вращение конструкции, равен:


 (3.2.2)

В приложении к курсовой работе изображён график зависимости  (рис. 3).


4. Определение реакций в опорах вращающегося тела

Определим реакции в опоре вращающегося тела методом кинетостатики. Он заключается в решении задачи динамики средствами (уравнениями) статики. Для каждой точки механической системы справедливо основное уравнение динамики:

 (4.1)

Здесь  и  – масса и ускорение некоторой точки системы;  – сумма всех активных сил и реакций связей, приложенных к ней.

Основному уравнению динамики (4.1) можно придать вид уравнения статики:

 (4.2)

Здесь  – сила инерции точки механической системы.

Рисунок 4.1. Определение реакций в опорах вращающегося тела


Для заданной механической системы уравнение статики (4.2) имеет вид:

 (4.3)

Для определения реакции шарнира нам необходимо и достаточно взять за координатные оси – неподвижные оси  и , и определить составляющие реакции шарнира на эти оси:

 (4.4)

Отсюда:

Подставив значения сил, получим:

 (4.5)

Теперь спроецируем (4.2) на неподвижную ось :

 (4.6)

Отсюда:

Подставив известные значения сил, получим:


 (4.7)

Полную реакцию в шарнире  можно найти по формуле: , где  и  определяются выражениями (4.5) и (4.7); график её зависимости от времени приведён в приложении к курсовой работе (рис. 4).


5. Исследование движения механической системы с двумя степенями свободы с помощью уравнений Лагранжа II рода

 

5.1 Составление уравнений движения системы методом Лагранжа

Уравнения второго рода являются одним из наиболее удобных приёмов составления уравнений движения механических систем. Они имеют следующий вид:

  (5.1.1)

Здесь  – кинетическая энергия системы; , , , – обобщённые координаты, скорости и силы соответственно;  – число степеней свободы.

Уравнения (5.1.1) образуют систему  уравнений второго порядка относительно  функций , а порядок данной системы равен . Форма уравнений Лагранжа не зависит от выбора обобщённых координат . В связи с этим говорят, что уравнения Лагранжа второго рода обладают свойством инвариантности.

Как видно из (5.1.1), для получения уравнений Лагранжа необходимо найти соответствующие производные от кинетической энергии системы и определить обобщённые силы.

Определим кинетическую энергию системы. Она будет складываться из кинетических энергий треугольника и шарика: .

Подставив значение  из (3.1.5), получим:


 (5.1.2)

Кинетическая энергия шарика определяется его массой и относительной и переносной скоростями:

С учётом известных значений скоростей, получим:

 (5.1.3)

Кинетическая энергия системы равна:

 (5.1.4)

Найдём производные от кинетической энергии согласно (5.1.1):

 (5.1.5)  (5.1.6)

 (5.1.7)  (5.1.8)


Рисунок 5.1.1. Определение кинетической и потенциальной энергий системы

Теперь, исходя из (5.1.1), нужно определить обобщённые силы. Данная механическая система является консервативной, мы можем определить обобщённые силы через потенциальную энергию по формуле:

 (5.1.9)

Найдём потенциальную энергию. Она будет складываться из работ консервативных сил по перемещению тела из нулевого положения: . За нулевой уровень потенциальной энергии выберем начальный момент времени, при :

 – энергия положения шарика;

 – энергия положения прямоугольника;

 – потенциальная энергия силы упругости;

Потенциальная энергия системы равна:


 (5.1.10)

Найдём обобщённые силы:

 (5.1.11)

 (5.1.12)

Теперь можем записать систему уравнений Лагранжа II рода:

 (5.1.13)

 (5.1.14)


Информация о работе «Исследование движения механической системы с двумя степенями свободы»
Раздел: Физика
Количество знаков с пробелами: 17334
Количество таблиц: 10
Количество изображений: 8

Похожие работы

Скачать
14404
0
3

... производные в уравнения Лагранжа (11): или  (j=1,2,…, s). (12) Уравнения (12) называются уравнениями Лагранжа второго рода для консервативной системы. 7 Применение уравнений Лагранжа II рода к исследованию движения механической системы   Массы тел механической системы m= 2m; m= 6m; m=m. Начальные условия:,,,. Найти уравнения движения системы в обобщенных координатах ,. Для ...

Скачать
29660
6
4

(3) w3z=w3z (j1, j2, j3, VM); w4z=w4z (j1, j2, j3, VM) или Vc=Vc (j1, j2, j3, VM) Из уравнений (3) определяют угловые скорости звеньев для фиксированного момента времени при заданных в этот момент значениях j1, j2, j3. Изменение j1, j2, j3, а следовательно и w1z, w2z, w3z во времени определится,если дополнить систему (3) уравнениями: ...

Скачать
68391
0
0

... и выдвигает новое определение: все системы, допускающие несводимое вероятностное описание, по определению считаются хаотическими [1, с.9]. 3. БРЮССЕЛЬСКАЯ ИНТЕРПРЕТАЦИЯ КВАНТОВОЙ МЕХАНИКИ Э.Шрёдингер 3.1 Альтернативные интерпретации квантовой механики Вероятно, квантовая механика – одна из немногих, если не единственная работающая физическая теория, по поводу интерпретации которой ...

Скачать
58635
3
11

... более прозаично связаны с периодическими колебаниями физических систем и воздействием на них сторонних сил, имеющих также физическую природу. Итак, природные катаклизмы вызываются периодическими колебаниями системы атмосфера – океан – Земля под воздействием Солнца (прецессия), неравномерности прогрева атмосферы (воздействие воздушных масс на Землю), неравномерным прогревом океана (океанические ...

0 комментариев


Наверх