5.2 Получение дифференциального уравнение относительного движения материальной точки

 

(5.1.13) и (5.1.14) – это система уравнений Лагранжа II рода; первое из них представляет собой дифференциальное уравнение относительного движения. При сравнении (5.1.13) с уравнением относительного движения (2.7) видно, что уравнения тождественны:

 (2.7)

 (5.1.13)


5.3 Определение закона изменения внешнего момента, обеспечивающего постоянство угловой скорости

(5.1.14) – это уравнение уравнения движения твердого тела без ограничения на закон изменения угловой скорости вращения. Определим величину внешнего момента, обеспечивающего равномерное вращение:

 (5.1.14)

При действии внешнего момента, обеспечивающего равномерное вращение, уравнение (5.1.14) примет вид:

 (5.3.1)

Отсюда:

 (5.2.2)

Сравним с полученным ранее значением:

 (3.2.2)

Итак, два разных способа определения внешнего момента дали один результат.


6. Определение положений равновесия механической системы и исследование их устойчивости

Важным случаем движения механических систем является их колебательное движение. Колебания – это повторяющиеся движения механической системы относительно некоторого ее положения, происходящие более или менее регулярно во времени. В курсовой работе рассматривается колебательное движение механической системы относительно положения равновесия (относительного или абсолютного).

Механическая система может совершать колебания в течение достаточно длительного промежутка времени только вблизи положения устойчивого равновесия. Поэтому перед тем, как составить уравнения колебательного движения, надо найти положения равновесия и исследовать их устойчивость.

Согласно основному уравнению статики, для того чтобы механическая система находилась в равновесии, необходимо и достаточно, чтобы в этой системе были равны нулю все обобщенные силы:

  (6.1)

 – обобщённые силы;  – число обобщённых координат в механической системе.

В нашем случае механическая система находится в потенциальном силовом поле; из уравнений (6.1) получаем следующие условия равновесия:

  (6.2)

Следовательно, в положении равновесия потенциальная энергия имеет экстремальное значение. Не всякое равновесие, определяемое вышеприведенными формулами, может быть реализовано практически. В зависимости от поведения системы при отклонении от положения равновесия говорят об устойчивости или неустойчивости данного положения. Достаточные условия устойчивости положений равновесия для консервативных систем определяются теоремой Лагранжа – Дирихле: «Положение равновесия консервативной механической системы устойчиво, если в нём потенциальная энергия системы имеет изолированный минимум».

Определим положения равновесия для заданной механической системы, используя ранее найденные обобщённые силы (5.1.11) и (5.1.12) из системы уравнений:

   (6.4)

Решение системы средствами MathCAD приведено в приложении Б к курсовой работе.

Для нашей механической системы имеем:

Первое положение равновесия: , .

Второе положение равновесия: , .

Используя теорему Лагранжа – Дирихле определяем, что первое положение равновесия является не устойчивым, а второе – устойчивым.

Рисунок 6.1. Положения равновесия механической системы


Найдем вторые производные от потенциальной энергии по обобщенным координатам:

(6.5)

Для исследования устойчивости положения равновесия необходимо исследовать на знакоопределенность матрицу жесткости, составленную из значений выражения (6.5) в этом положении равновесия.

1)

Положение равновесия не устойчивое

2)

Положение равновесия устойчивое



Заключение

В данной курсовой работе была исследована механическая система с двумя степенями свободы. В результате были достигнуты изначально поставленные цели, а именно:

Ø   получен закон относительного движения материальной точки;

Ø   составлено уравнение движения твердого тела с помощью теоремы об изменении кинетического момента, определено значение внешнего момента, обеспечивающего равномерное вращение конструкции;

Ø   найдены реакции в опорах вращающегося тела;

Ø   проведено исследование движения механической системы с помощью уравнений Лагранжа II рода, в результате которого получены уравнение относительного движения материальной точки и закон изменения внешнего момента, обеспечивающего постоянство угловой скорости;

Ø   определены положения равновесия механической системы и исследована их устойчивость;

В приложениях к курсовой работе приведены результаты численного интегрирования, а так же графики зависимостей определяемых величин.


Список использованных источников

1.   Бутенин Н.В., Лунц Я.Л. и др.: Курс теоретической механики, том 1 и том 2, Москва, «Наука», 1970.

2.   Яблонский А.А., Норейко С.С.: Курс теории колебаний, Москва, Высшая школа, 1966.

3.   Динамика точки и механической системы: Учебное пособие для курсового проектирования / Авраменко А.А., Архипов В.В., Асланов В.С., Тимбай И.А.; Под ред. проф. В.С. Асланова. – Самарский государственный аэрокосмический университет, Самара, 2001 – 84 с.


Информация о работе «Исследование движения механической системы с двумя степенями свободы»
Раздел: Физика
Количество знаков с пробелами: 17334
Количество таблиц: 10
Количество изображений: 8

Похожие работы

Скачать
14404
0
3

... производные в уравнения Лагранжа (11): или  (j=1,2,…, s). (12) Уравнения (12) называются уравнениями Лагранжа второго рода для консервативной системы. 7 Применение уравнений Лагранжа II рода к исследованию движения механической системы   Массы тел механической системы m= 2m; m= 6m; m=m. Начальные условия:,,,. Найти уравнения движения системы в обобщенных координатах ,. Для ...

Скачать
29660
6
4

(3) w3z=w3z (j1, j2, j3, VM); w4z=w4z (j1, j2, j3, VM) или Vc=Vc (j1, j2, j3, VM) Из уравнений (3) определяют угловые скорости звеньев для фиксированного момента времени при заданных в этот момент значениях j1, j2, j3. Изменение j1, j2, j3, а следовательно и w1z, w2z, w3z во времени определится,если дополнить систему (3) уравнениями: ...

Скачать
68391
0
0

... и выдвигает новое определение: все системы, допускающие несводимое вероятностное описание, по определению считаются хаотическими [1, с.9]. 3. БРЮССЕЛЬСКАЯ ИНТЕРПРЕТАЦИЯ КВАНТОВОЙ МЕХАНИКИ Э.Шрёдингер 3.1 Альтернативные интерпретации квантовой механики Вероятно, квантовая механика – одна из немногих, если не единственная работающая физическая теория, по поводу интерпретации которой ...

Скачать
58635
3
11

... более прозаично связаны с периодическими колебаниями физических систем и воздействием на них сторонних сил, имеющих также физическую природу. Итак, природные катаклизмы вызываются периодическими колебаниями системы атмосфера – океан – Земля под воздействием Солнца (прецессия), неравномерности прогрева атмосферы (воздействие воздушных масс на Землю), неравномерным прогревом океана (океанические ...

0 комментариев


Наверх