2.2 Структура жидкостей

До применения рентгеновского анализа теория жидкого состояния веществ основывалось на концепции, вытекающей из уравнения Ван-дер-Ваальса, по которому устанавливалась определенная постепенность перехода от газообразного состояния к жидкому. При сильном сжатии межмолекулярные силы сцепления между частицами газа становятся настолько значительными, что вещество уже само сохранять свой объем, независимо от внешнего давления. Происходит изменение агрегатного состояния и образуется жидкость, которую, по этим представлениям, можно рассматривать как сильно сжатый газ.

Однако рентгеновский анализ показал, что сконденсированные частицы газа образуют небольшие группы с упорядоченной структурой. Из концепции о сжатом газе это непосредственно не вытекало.

Если электроны отдельных атомов имели с последними сравнительно слабую связь, то при сближении до расстояний, сравнимых с размерами электронных орбит, должно происходить “обобществление” этих электронов. Такое состояние будет характерно для металлов. В случае же сильной связи электронов с отдельными атомами подобного рода сближение не вызовет “обобществления” электронов, у которых связь со своими атомами в какой-то мере сохранится. Вещество тогда будет диэлектриком. Следовательно, последний должен состоять из отдельных атомов, силовые поля которых удерживают свои электроны. При поглощении квантов энергии, например при облучении, электроны могут выйти из сферы действия своих атомов и образовывать ток проводимости[8].

При подобного рода облучении может оказаться, что поглощенного кванта энергии будет недостаточно для полного отрыва электрона от своего атома. Электрон придет в возбужденное состояние, т.е. будет вращаться вокруг своего атома по большей орбите. При столкновениях атомов возбужденное состояние может передаваться другим атомам, т.е. будут образовываться экситоны, но проводимости не возникнет. Такое явление наблюдается на опыте и легко объяснимо с точки зрения классической концепции заключающейся в представлении о диэлектрике как о сжатом газе. С зоной точки зрения указанное явление объяснить трудно [8].

В настоящее время принято считать, что жидкость при температурах, близких к тем, при которых происходит кристаллизация, имеет много общих черт с кристаллами, чем с газами, а при температурах или давлениях, близких к “критическим”, жидкость больше похожа на газ. Таким образом, жидкое состояние является промежуточным. Черты и различия выступают особенно наглядно в характере тепловых движений. В газах молекулы быстро и беспорядочно движутся, и взаимодействие частиц наступает главным образом только при столкновениях, которые сообщают газам некоторые характерные черты (диффузия, теплопроводность и вязкость).

В твердых телах атомы длительно совершают тепловые колебания в одном и том же окружении, но это окружение не является постоянным: атомы из одного положения равновесия переходят в другое (узлы и междоузлия), и таким образом, хотя и медленно, но также как и в газах, происходит непрерывное перемешивание атомов. В этом отношении уже имеются некоторые черты сходства газа и твёрдого тела [6].

Для движения частиц в жидкости имеется значительно больший простор, чем в твёрдом теле, поскольку, например. При плавлении кристаллов их объём увеличивается на3-10%.Однако частицы жидкостей, также как и частицы кристаллического тела, совершают колебания около временного положения равновесия. При достаточной энергии частица жидкости покидает это положение и переходит в новое окружение .Такие переходы случаются весьма часто, и в этом жидкости существенно отличаются от твёрдых тел. При переходах, вследствии теплового движения, в жидкостях могут самопроизвольно образовываться микрополости за счёт расширения частиц в стороны( процессы кавитации).Эти полости, как можно предполагать, играют некоторую роль в явлении разброса при определении величин пробивных напряжений, что обычно приписывается влиянию примесей и некоторым случайным факторам.

Длительность колебаний частиц жидкостей около одного равновесного положения зависит от температуры. При увеличении последней это число колебаний уменьшается.

При изучении закономерностей рассеяния рентгеновских лучей жидкостями были найдены, хотя и размытые, но определённые максимумы рассеянного излучения. На основании этого можно было предполагать наличие некоторой упорядоченности в структуре жидких тел[8].

Таким образом, можно считать установленным существование в жидкостях микрообъёмов с упорядоченной структурой. В этом отношении жидкость также имеет определённое сходство с твёрдым телом. Оказывается, что на фоне общего беспорядка жидкостей всё же имеют определённый порядок в расположении на малых расстояниях (ближний порядок).

Рентгеновский анализ, однако, не даёт возможности определить природу таких квазикристаллитных групп в той же степени, как это можно сделать для кристаллов. В настоящее время о природе этих преобразований можно высказать два предположения.

По первому из них, в микрообластях с размерами 10-20 А имеется определённая порядочная структура рассеивающих центров, очень близко напоминающая кристаллическое строение. На основании этого представления жидкость можно рассматривать состоящей из очень большого количества мелких кристалликов (кристаллитов), разделённых аморфными прослойками[8].

По второму предложению, молекулярная упорядоченность жидкостей соответствует так называемому сиботактическому состоянию. В определённый момент времени жидкость можно представить тоже состоящей их небольших упорядоченных групп. Но молекулы в этих сиботактических группах прочно не закреплены, а постоянно смещаются. Да и сами группы не существуют продолжительное время, а распадаются и создаются вновь. Этим сиботактические группы отличаются от кристаллитов твёрдого вещества. При изменении температуры структура сиботактических групп может тоже изменяться. С приближением к точке кристаллизации, вследствие действия сил, обусловливающих кристаллическое строение, структура этих групп может приблизиться к кристаллической. Это подтверждается и данными рентгеновского анализа. Кривые интенсивности рассеянных лучей в жидкостях при температуре, близкой к точке кристаллизации, делаются схожими с такими же кривыми для твердого кристаллического состояния. По-видимому, и среднее расположение рассеивающих центров в жидкостях при этом делается таким же, как и у кристалла.

Из приведённых данных следует, что пробивная напряжённость жидкостей зависит от их структуры и что заранее предсказать характер изменения Е при переходе веществ из газообразного состояния в жидкое пока невозможно. Основные электрические свойства жидкостей, по-видимому, определяются «ближним порядком», т.е. характером взаимодействия молекул с ближайшими соседями, как это имеет место у полупроводников [8].


Информация о работе «Исследование физических явлений в диэлектрических жидкостях инициируемых лазерным излучением»
Раздел: Физика
Количество знаков с пробелами: 68288
Количество таблиц: 0
Количество изображений: 31

Похожие работы

Скачать
113333
0
2

... влияющие на точность и воспроизводимость результатов. Области практического применения лазерной размерной обработки ограничены преимущественно получением отверстий не выше 3-го класса точности. Тем не менее, лазерная технология получения отверстий внедрена на ряде предприятий, где с ее помощью получают черновые отверстия (на проблемах внедрения этих процессов мы остановимся позднее). Относительно ...

Скачать
310716
12
0

... -текущих планов мероприятий – до исполнения. -перспективных планов мероприятий – 5 лет. Выводы по разделу 1. В первом разделе были рассмотрены теоретические основы управления качеством, являющимися базовыми при разработке системы управления качеством. Был затронут международный опыт данной деятельности. При работе над первым разделом была рассмотрена и представлена в разделе, процедура получения ...

0 комментариев


Наверх