Экономико-математические задачи, цель которых состоит в нахождении наилучшего, то есть оптимального с точки зрения одного или нескольких критериев варианта использования имеющихся ресурсов, называются оптимизационными.
Оптимизационные задачи решаются с помощью оптимизационных моделей методами математического программирования.
Математическое программирование – это раздел прикладной математики, который изучает задачи оптимизации и методы их решения с ориентацией на современные средства компьютерной техники.
Структура оптимизационной модели включает целевую функцию, области допустимых решений и системы ограничений, определяющих эту область. Целевая функция в самом общем виде также состоит из трех элементов:
· управляемых переменных;
· неуправляемых переменных;
· формы функции (вида зависимости между ними).
Область допустимых решений – это область, в пределах которой осуществляется выбор решений. В экономических задачах она ограничена наличными ресурсами и условиями, которые записываются в виде системы ограничений, состоящей из уравнений и неравенств.
Главная задача математического программирования – это нахождение экстремума функций при выполнении указанных ограничений. Если система ограничений несовместима, то область допустимых решений является пустой.
Сущность задач оптимизации: определить значение переменных х1, х2,..., хn, которые обеспечивают экстремум целевой функции Е, с учетом ограничений, наложенных на аргументы этой функции. При этом сложность решения задач зависит:
· от вида функциональных зависимостей, то есть от связи функции Е с элементами решения;
· от размерности задачи, то есть от количества элементов решения;
· от вида и количества ограничений, накладываемых на элементы решения.
8 РЕШЕНИЕ ЗАДАЧИ
Кондитерская фабрика для производства трех видов карамели А, В и С использует три вида сырья: сахарный песок, патоку и фруктовое пюре. Нормы расхода сырья на производство 1 кг. Карамели заданы в таблице.
Наименование сырья | Нормы расхода (кг./кг.) |
| ||
A | B | C | ||
Сахарный песок | 0,6 | 0,5 | 0,6 | |
Патока | 0,4 | 0,4 | 0,3 | |
Фруктовое пюре | 0,1 | 0,2 | 0,2 | |
Запасы сырья на складе соответственно равны V1, V2 и V3 кг. Прибыль от реализации 1 кг. Продукции каждого вида определяется значениями РА, РВ и РС. Найти план производства карамели, обеспечивающий максимальную прибыль.
Запасы сырья (кг.) | Прибыль от реализации (руб./кг.) | ||||
V1 | V2 | V3 | Pa | Pb | Pc |
800 | 600 | 120 | 1,08 | 1,12 | 1,28 |
Подготовим задачу к решению.
Пусть х1 – карамель вида А (кг.)
х2 – карамель вида В (кг.)
х3 – карамель вида С (кг.).
Тогда система ограничений и целевая функция запишутся следующим образом:
Ра*Х1+Рв*Х2+Рс*Х3 =>mах (целевая функция);
х1*0,6+х2*0,5+х3*0,6<=800
х1*0,4+х2*0,4+х3*0,3<=600 ограничения на запасы сырья (сахарный
х1*0.1+х2*0,2+х3*0,2<=120 песок, патока, фруктовое пюре)
х1>=0; x2>=0; x3>=0;
x1, x2, x3- целые числа.
Для решения задачи в Excel запишем ее в виде, представленном на таблице 1.
Таблица 1 – Таблица для решения задачи
Кг. | ограничение | |||||
х1 | 0 | 800 | >= | 0 | ||
х2 | 0 | 600 | >= | 0 | ||
х3 | 0 | 120 | >= | 0 | ||
Mах прибыль: | 0 |
| ||||
В соответствии с условием прибыль должна быть максимальной, поэтому в таблице 1 добавлена строка «Mах прибыль». В ней буду суммировать прибыль от реализации продукции.
Вызываю Поиск решения из меню Сервис.
Определяю целевую ячейку – $D$8, устанавливаю переключатель в максимальное значение. Ввожу диапазон изменяемых ячеек ($B$11:$В$13) и вношу ограничения. Прежде всего, количество продукта не может быть отрицательным ($B$11:$В$13>=0), далее добавляю ограничения на запасы сырья, которое должно быть не более нормативного (800>=G$5; 600>=G$6; 120>=G$7). Нажимаю кнопку Выполнить.
В появившемся окне Результаты поиска решения нажимаю кнопку ОК и получаю решение задачи (приложение Д).Из полученных данных видно, что максимальная прибыль при производстве карамели составила 1296 рублей, причем такая прибыль будет получена при производстве 1200кг. Карамели вида А.
Для проверки правильности решения введем дополнительные ограничения.
В первом варианте я ввела ограничение на карамель вида В и получила результат приведенный в таблице 1.
Таблица 1
Вариант 1 |
| Запасы сырья (кг.) | Ограничение | |||
Х1 | 1170 | 800 | >= | 709,5 | ||
Х2 | 15 | 600 | >= | 474 | ||
Х3 | 0 | 120 | >= | 120 | ||
Целевая функция | 1280,4 | Дополнительное ограничение | Х2>=15 |
|
|
Из таблицы видно, что прибыль по сравнению с данными полученными в приложении Д уменьшилась на 15,6 рублей, при этом уменьшилось и производство карамели вида А на 30кг.
Во втором варианте я ввела ограничение на карамель вида С и получила следующий результат
Вариант 2 | Запасы сырья (кг.) | Ограничение | ||
Х1 | 1180 | 800 | >= | 714 |
Х2 | 0 | 600 | >= | 475 |
Х3 | 10 | 120 | >= | 120 |
Целевая функция | 1287,2 | Дополнительное ограничение | Х3>=10 |
Из полученных данных видно, что прибыль, так же как и в первом варианте, уменьшилась относительно данных из приложения Д на 8,8 рубля, а производство карамели вида А уменьшилось на 20кг.
По полученным данным можно сделать вывод, что исходное решение задачи было верным.
В данной курсовой работе были решены оптимизационные задачи с использованием программных средств Microsoft Excel.
В процессе решения первой задачи были построены: график функции F(x) с учетом параметра А=0 в заданном диапазоне значений переменной Х, которые изменяются в диапазоне от 0 до 400. Были найдены интервалы значений переменной Х в пределах, которых функция принимает значение параметра А. При использовании метода половинного деления были найдены значения переменной Х, при которых функция принимает значение параметра А, в соответствии с заданной точностью, равной 0,001. Проверка правильности вычислений была осуществлена с помощью «Подбора параметра».
Решение второй задачи осуществлялось с помощью «Поиска решений» средствами Microsoft Excel. Была составлена целевая функция и ограничения (соответствующие условию задачи). В результате был выбран оптимальный вариант решения задачи. Для проверки этого варианта были внесены дополнительные ограничения, которые показали, что исходно оптимальный вариант решения был верен.
ПРИЛОЖЕНИЕ А
Начало
Описание F(х), А, ∆
Ввод а, b
с=(a+b)/2
F(a), F(b), F(c)
нет да
(F(a)-A)+(F(c)-A)<=0
a: = c b: = c
нет да
(b-a)<=∆
Выво с,F(c), F(c)-A
Конец
ПРИЛОЖЕНИЕ Б
ПРИЛОЖЕНИЕ В
ПРИЛОЖЕНИЕ Г
А В С D E
X | F(x) | A | F(x)-A | Смена знака | |||||
5 | -76,6150 | 0 | -76,6150 | ||||||
10 | -31,4838 | 0 | -31,4838 | ||||||
15 | -6,1292 | 0 | -6,1292 | смена знака | |||||
20 | 5,6646 | 0 | 5,6646 | ||||||
25 | 5,7512 | 0 | 5,7512 | смена знака | |||||
30 | -2,4673 | 0 | -2,4673 | ||||||
35 | -13,9441 | 0 | -13,9441 | ||||||
40 | -23,0017 | 0 | -23,0017 | ||||||
45 | -24,6667 | 0 | -24,6667 | ||||||
50 | -15,8988 | 0 | -15,8988 | смена знака | |||||
55 | 3,6061 | 0 | 3,6061 | ||||||
60 | 31,2394 | 0 | 31,2394 | ||||||
65 | 61,9826 | 0 | 61,9826 | ||||||
70 | 89,4820 | 0 | 89,4820 | ||||||
75 | 107,4577 | 0 | 107,4577 | ||||||
80 | 111,1312 | 0 | 111,1312 | ||||||
85 | 98,3486 | 0 | 98,3486 | ||||||
90 | 70,1426 | 0 | 70,1426 | ||||||
95 | 30,6047 | 0 | 30,6047 | смена знака | |||||
100 | -13,9123 | 0 | -13,9123 | ||||||
105 | -56,0851 | 0 | -56,0851 | ||||||
110 | -89,1227 | 0 | -89,1227 | ||||||
115 | -108,1489 | 0 | -108,1489 | ||||||
120 | -111,1603 | 0 | -111,1603 | ||||||
125 | -99,3512 | 0 | -99,3512 | ||||||
130 | -76,7403 | 0 | -76,7403 | ||||||
135 | -49,1871 | 0 | -49,1871 | ||||||
140 | -23,0264 | 0 | -23,0264 | ||||||
145 | -3,6307 | 0 | -3,6307 | смена знака | |||||
150 | 5,7743 | 0 | 5,7743 | ||||||
155 | 4,7747 | 0 | 4,7747 | смена знака | |||||
160 | -4,2332 | 0 | -4,2332 | ||||||
165 | -16,7039 | 0 | -16,7039 | ||||||
170 | -27,1093 | 0 | -27,1093 | ||||||
175 | -30,3377 | 0 | -30,3377 | ||||||
180 | -23,0020 | 0 | -23,0020 | ||||||
185 | -4,3520 | 0 | -4,3520 | смена знака | |||||
190 | 23,4221 | 0 | 23,4221 | ||||||
195 | 55,5727 | 0 | 55,5727 | ||||||
200 | 85,7823 | 0 | 85,7823 | ||||||
205 | 107,5385 | 0 | 107,5385 | ||||||
210 | 115,5876 | 0 | 115,5876 | ||||||
215 | 107,1397 | 0 | 107,1397 | ||||||
220 | 82,5521 | 0 | 82,5521 | ||||||
225 | 45,3337 | 0 | 45,3337 | ||||||
230 | 1,4645 | 0 | 1,4645 | смена знака | |||||
| 235 | -41,8225 | 0 | -41,8225 | |||||
| 240 | -77,5282 | 0 | -77,5282 | |||||
| 245 | -100,3165 | 0 | -100,3165 | |||||
| 250 | -107,5698 | 0 | -107,5698 | |||||
| 255 | -99,8416 | 0 | -99,8416 | |||||
| 260 | -80,6115 | 0 | -80,6115 | |||||
| 265 | -55,4037 | 0 | -55,4037 | |||||
| 270 | -30,4751 | 0 | -30,4751 | |||||
| 275 | -11,3711 | 0 | -11,3711 | |||||
| 280 | -1,6789 | 0 | -1,6789 | |||||
| 285 | -2,2580 | 0 | -2,2580 | |||||
| 290 | -11,1210 | 0 | -11,1210 | |||||
| 295 | -23,9866 | 0 | -23,9866 | |||||
| 300 | -35,3741 | 0 | -35,3741 | |||||
| 305 | -39,9858 | 0 | -39,9858 | |||||
| 310 | -34,0560 | 0 | -34,0560 | |||||
| 315 | -16,3539 | 0 | -16,3539 | смена знака | ||||
| 320 | 11,3948 | 0 | 11,3948 | |||||
| 325 | 44,7702 | 0 | 44,7702 | |||||
| 330 | 77,5536 | 0 | 77,5536 | |||||
| 335 | 103,0577 | 0 | 103,0577 | |||||
| 340 | 115,5964 | 0 | 115,5964 | |||||
| 345 | 111,7635 | 0 | 111,7635 | |||||
| 350 | 91,2325 | 0 | 91,2325 | |||||
| 355 | 56,8943 | 0 | 56,8943 | |||||
| 360 | 14,2986 | 0 | 14,2986 | смена знака | ||||
| 365 | -29,4800 | 0 | -29,4800 | |||||
| 370 | -67,3017 | 0 | -67,3017 | |||||
| 375 | -93,4252 | 0 | -93,4252 | |||||
| 380 | -104,6518 | 0 | -104,6518 | |||||
| 385 | -100,9012 | 0 | -100,9012 | |||||
| 390 | -85,0963 | 0 | -85,0963 | |||||
| 395 | -62,3901 | 0 | -62,3901 | |||||
| 400 | -38,9164 | 0 | -38,9164 | смена знака | ||||
ПРИЛОЖЕНИЕ Д
A | B | C | D | E | F | G |
Наименование сырья | Нормы расхода (кг./кг.) | Запасы сырья (кг.) | Ограничение | |||
A | B | C | ||||
Сахарный песок | 0,6 | 0,5 | 0,6 | 800 | >= | 720 |
Патока | 0,4 | 0,4 | 0,3 | 600 | >= | 480 |
Фруктовое пюре | 0,1 | 0,2 | 0,2 | 120 | >= | 120 |
Прибыль от реализации (руб./кг.) | 1,08 | 1,12 | 1,28 | |||
Целевая функция | 1296 | |||||
x1 | 1200 | А=х1 | ||||
x2 | 0 | В=х2 | ||||
x3 | 0 | С=х3 |
Литература
1. Банди Б. Основы линейного программирования. – М.: Радио и связь, 1989.
2. Карпов Б. Microsoft Excel 2000. Справочник.- Питер, 2002.
3. Семенищенков А. Microsoft Excel. Параметры и методы практического программирования. – Брянск, 1998.
4. Рычков В. Microsoft Excel 2000. – Питер, 2000.
... Университет) Факультет Кибернетики Кафедра «Кибернетика» Пояснительная записка к дипломному проекту и учебно-исследовательской работе на тему: Создание автоматизированной системы расчета трудоемкости разработки и сопровождения программных средств Выполнил студент группы В6-29П _____________ (Власова Е.А.) Руководитель ______________________________ (Золотухина Е.Б.) Оценка: Комиссия: ( ...
... объектов; б) наличие данных за предыдущий период; в) наличие базисных данных; г) сопоставимость данных. 26. По характеру принимаемых решений экономический анализ подразделяется: а) предварительный, текущий и заключительный б) оперативный, ретроспективный и перспективный в) предварительный, последующий и итоговый 27. Информация, ...
... первоначальное количество ошибок можно оценить как: Поставленная задача позволяет определить такие важные характеристики функционирования программного комплекса, как: расчет текущего времени наработки до отказа; расчет среднего времени наработки до отказа за все время моделирования работы системы; расчет вероятности отказа ПО в единицу расчёт коэффициента готовности Таким образом, наша ...
... управления, прочие системы. Целью данной курсовой работы является рассмотрение, освещение и оценка возможностей пакета прикладных программ MS OFFICE с точки зрения информационных технологий и методов их использования при решении экономических задач. 2. Использование пакета прикладных программ MS OFFICE при решении экономических задач 2.1 Обзор возможностей Microsoft Office Пакет ...
0 комментариев