СОДЕРЖАНИЕ

Задание 1

Задание 2

Задание 3

Задание 4

Список использованной литературы


Задание 1

Имеются данные за 12 месяцев года по району города о рынке вторичного жилья (y – стоимость квартиры (тыс. у.е.), x – размер общей площади (м2)). Данные приведены в табл. 1.4.

Таблица 1

Месяц 1 2 3 4 5 6 7 8 9 10 11 12
у 22,5 25,8 20,8 15,2 25,8 19,4 18,2 21,0 16,4 23,5 18,8 17,5
х 29,0 36,2 28,9 32,4 49,7 38,1 30,0 32,6 27,5 39,0 27,5 31,2

Задание:

1.   Рассчитайте параметры уравнений регрессий

 и .

2.   Оцените тесноту связи с показателем корреляции и детерминации.

3.   Рассчитайте средний коэффициент эластичности и дайте сравнительную оценку силы связи фактора с результатом.

4.   Рассчитайте среднюю ошибку аппроксимации и оцените качество модели.

5.   С помощью F-статистики Фишера (при ) оцените надежность уравнения регрессии.

6.   Рассчитайте прогнозное значение , если прогнозное значение фактора увеличится на 5% от его среднего значения. Определите доверительный интервал прогноза для .

7.   Расчеты должны быть подробны, как показано в примере 1, и сопровождены пояснениями.


Решение

Составим таблицу расчетов 2.

Все расчеты в таблице велись по формулам

.

Таблица 2

х

х2

у ху

у2

А(%)
29,0 841,0 22,5 652,5 506,3 2,1 -4,5 4,38 20,33 18,93 3,57 12,75 15,871
36,2 1310,4 25,8 934,0 665,6 5,4 2,7 29,07 7,25 21,28 4,52 20,40 17,506
28,9 835,2 20,8 601,1 432,6 0,4 -4,6 0,15 21,24 18,90 1,90 3,62 9,152
32,4 1049,8 15,2 492,5 231,0 -5,2 -1,1 27,13 1,23 20,04 -4,84 23,43 31,847
49,7 2470,1 25,8 1282,3 665,6 5,4 16,2 29,07 262,17 25,70 0,10 0,01 0,396
38,1 1451,6 19,4 739,1 376,4 -1,0 4,6 1,02 21,08 21,90 -2,50 6,27 12,911
30,0 900,0 18,2 546,0 331,2 -2,2 -3,5 4,88 12,31 19,26 -1,06 1,12 5,802
32,6 1062,8 21,0 684,6 441,0 0,6 -0,9 0,35 0,83 20,11 0,89 0,80 4,256
27,5 756,3 16,4 451,0 269,0 -4,0 -6,0 16,07 36,10 18,44 -2,04 4,16 12,430
39,0 1521,0 23,5 916,5 552,3 3,1 5,5 9,56 30,16 22,20 1,30 1,69 5,536
27,5 756,3 18,8 517,0 353,4 -1,6 -6,0 2,59 36,10 18,44 0,36 0,13 1,923
31,2 973,4 17,5 546,0 306,3 -2,9 -2,3 8,46 5,33 19,65 -2,15 4,62 12,277

402,1 13927,8 244,9 8362,6 5130,7 0,0 0,0 132,7 454,1 - - 79,0 129,9
Среднее значение 33,5 1160,7 20,4 696,9 427,6 - - - - - - 6,6 10,8

6,43 - 3,47 - -

 

41,28 - 12,06 - -

 

Тогда

,

 


и линейное уравнение регрессии примет вид: .

Рассчитаем коэффициент корреляции:

.

Связь между признаком  и фактором  заметная.

Коэффициент детерминации – квадрат коэффициента или индекса корреляции.

R2 = 0,6062 = 0,367

Средний коэффициент эластичности  позволяет проверить, имеют ли экономический смысл коэффициенты модели регрессии.

 

Для оценки качества модели определяется средняя ошибка аппроксимации:

,

допустимые значения которой 8 - 10 %.

Вычислим значение -критерия Фишера.

,

где

 – число параметров уравнения регрессии (число коэффициентов при объясняющей переменной );

 – объем совокупности.

.

По таблице распределения Фишера находим

.

Так как , то гипотеза  о статистической незначимости параметра  уравнения регрессии отклоняется.

Так как , то можно сказать, что 36,7% результата объясняется вариацией объясняющей переменной.

Выберем в качестве модели уравнения регрессии , предварительно линеаризовав модель. Введем обозначения: . Получим линейную модель регрессии .

Рассчитаем коэффициенты модели, поместив все промежуточные расчеты в табл. 3.

Таблица 3

y yU

y2

А(%)
5,385 29,0 22,5 121,17 506,25 1,640 -0,452 2,69 0,20 13,74 8,76 76,7 38,92
6,017 36,2 25,8 155,23 665,64 4,940 0,180 24,40 0,03 14,01 11,79 139,0 45,70
5,376 28,9 20,8 111,82 432,64 -0,060 -0,461 0,004 0,21 13,74 7,06 49,9 33,95
5,692 32,4 15,2 86,52 231,04 -5,660 -0,145 32,04 0,02 13,87 1,33 1,8 8,72
7,050 49,7 25,8 181,89 665,64 4,940 1,213 24,40 1,47 14,42 11,38 129,5 44,11
6,173 38,1 19,4 119,75 376,36 -1,460 0,336 2,13 0,11 14,07 5,33 28,4 27,45
5,477 30,0 18,2 99,69 331,24 -2,660 -0,360 7,08 0,13 13,78 4,42 19,5 24,27
5,710 32,6 21,0 119,90 441 0,140 -0,127 0,02 0,02 13,88 7,12 50,7 33,89
5,244 27,5 16,4 86,00 268,96 -4,460 -0,593 19,89 0,35 13,68 2,72 7,4 16,58
6,245 39,0 23,5 146,76 552,25 2,640 0,408 6,97 0,17 14,10 9,40 88,3 39,98

58,368 343,4 208,600 1228,71 4471,02 - - - - - - - 313,567
Среднее значение 5,837 34,34 20,860 122,871 447,10 - - - - - - - 31,357

0,549 - 3,646 - - - -

 

0,302 - 13,292 - - - -

 

Рассчитаем параметры уравнения:

,

,

.

Коэффициент корреляции

.

Коэффициент детерминации

,

следовательно, только 9,3% результата объясняется вариацией объясняющей переменной .


,

,

следовательно, гипотеза  о статистической незначимости уравнения регрессии принимается. По всем расчетам линейная модель надежнее, и последующие расчеты мы сделаем для нее.

11

 
Оценим значимость каждого параметра уравнения регрессии

.

Используем для этого t-распределение (Стьюдента). Выдвигаем гипотезу  о статистической незначимости параметров, т.е.

.

.

Определим ошибки .

,

,

,

,

,

.

Полученные оценки модели и ее параметров позволяют использовать ее для прогноза.

Рассчитаем

.

Тогда

.

Средняя ошибка прогноза

,

где

,

.

Строим доверительный интервал с заданной доверительной вероятностью :


,

,

.

Найденный интервальный прогноз достаточно надежен (доверительная вероятность ) и достаточно точен, т.к. .

Оценим значимость каждого параметра уравнения регрессии

.

Используем для этого t-распределение (Стьюдента). Выдвигаем гипотезу  о статистической незначимости параметров, т.е.

.

.

Определим ошибки .

,

,

, ,

, .

Следовательно,  и  не случайно отличаются от нуля, а сформировались под влиянием систематически действующей производной.

1.          , следовательно, качество модели не очень хорошее.


Информация о работе «Решение задач по эконометрике»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 14849
Количество таблиц: 9
Количество изображений: 2

Похожие работы

Скачать
21222
13
4

... уравнения. 4.   Найти среднюю ошибку аппроксимации. 5.   Рассчитать прогнозное значение результата, если прогнозное значение факторов составит: х1 = 35 лет, х2 = 10 лет, х3 = 20 штук в смену. Решение. Для оценки мультиколлинеарности факторов используем определитель матрицы парных коэффициентов корреляции между факторами. Определим парные коэффициенты корреляции. Для этого рассчитаем ...

Скачать
22670
1
4

... а также любые колебания, в которых прослеживается закономерность. В качестве примера можно назвать модель экспоненциального сглаживания Брауна. 3. Пример проведения прогнозирования прибыли с использованием пакета SPSS Постановка задачи: Необходимо построить модель, дающую возможность предсказывать размер прибыли некоторой торговой фирмы, если известны данные о ежемесячной прибыли за последние ...

Скачать
24301
8
7

... , и , то можно предположить о правильном распределении объектов и уже существующих двух классах и верно выполненной классификации объектов подмножества М0. 3.2 Пример решения задачи дискриминантным анализом в системе STATISTICA Исходя из данных по 10 странам (рис. 3.1), которые были выбраны и отнесены к соответствующим группам экспертным методом (по уровню медицинского обслуживания), ...

Скачать
26462
1
35

... . Специалист для которого MS Excel является именно тем средством которое позволяет облегчить и ускорить его работу, должен знать и уметь использовать в повседневной работе новейшие экономико-математические методы и модели, предлагаемые новыми прикладными программами. Традиционный способ изучения экономико-математических методов заключается не только в определении их назначения и сути, ...

0 комментариев


Наверх