2.          Полученные оценки модели и ее параметров позволяют использовать ее для прогноза.

Рассчитаем . Тогда .

3.         Средняя ошибка прогноза

,

где

,

.

Строим доверительный интервал с заданной доверительной вероятностью :

,

,

.

Найденный интервальный прогноз достаточно надежен (доверительная вероятность ) и достаточно точен, т.к. .


Задание 2

Имеются данные о деятельности крупнейших компаний в течение двенадцати месяцев 199Х года. Данные приведены в табл. 4.

Известны – чистый доход (у), оборот капитала (х1), использованный капитал (х2) в млрд у.е.

Таблица 4

у

х1

х2

1,5 5,9 5,9
5,5 53,1 27,1
2,4 18,8 11,2
3,0 35,3 16,4
4,2 71,9 32,5
2,7 93,6 25,4
1,6 10,0 6,4
2,4 31,5 12,5
3,3 36,7 14,3
1,8 13,8 6,5
2,4 64,8 22,7
1,6 30,4 15,8

Задание:

1. Рассчитайте параметры линейного уравнения множественной регрессии.

2. Дайте оценку силы связи факторов с результатом с помощью средних коэффициентов эластичности.

3. Оцените статистическую зависимость параметров и уравнения регрессии в целом с помощью соответственно критериев Стьюдента и Фишера (α=0,01).

4. Рассчитайте среднюю ошибку аппроксимации. Сделайте вывод.

5. Составьте матрицы парных и частных коэффициентов корреляции и укажите информативные факторы.

6. Оцените полученные результаты, выводы оформите в аналитической записке.

Решение

Результаты расчетов приведены в табл. 5.

Таблица 5

y

x1

x2

yx1

yx2

x1x2

x12

x22

y2

1,5 5,9 5,9 8,85 8,85 34,81 34,81 34,81 2,25
5,5 53,1 27,1 292,05 149,05 1439,01 2819,61 734,41 30,25
2,4 18,8 11,2 45,12 26,88 210,56 353,44 125,44 5,76
3 35,3 16,4 105,90 49,20 578,92 1246,09 268,96 9
4,2 71,9 32,5 301,98 136,50 2336,75 5169,61 1056,25 17,64
2,7 93,6 25,4 252,72 68,58 2377,44 8760,96 645,16 7,29
1,6 10 6,4 16,00 10,24 64,00 100,00 40,96 2,56
2,4 31,5 12,5 75,60 30,00 393,75 992,25 156,25 5,76
3,3 36,7 14,3 121,11 47,19 524,81 1346,89 204,49 10,89
1,8 13,8 6,5 24,84 11,70 89,70 190,44 42,25 3,24
2,4 64,8 22,7 155,52 54,48 1470,96 4199,04 515,29 5,76
1,6 30,4 15,8 48,64 25,28 480,32 924,16 249,64 2,56

32,4 465,8 196,7 1448,33 617,95 10001,03 26137,30 4073,91 102,96
Средн. 2,7 38,8 16,4 120,69 51,50 833,42 - - 65,80

1,2 27,1 8,8 - - - - - -

1,4 732,4 77,2 - - - - - -

Рассматриваем уравнение вида:

.

Параметры уравнения можно найти из решения системы уравнений:

Или, перейдя к уравнению в стандартизированном масштабе:


, где

 – стандартизированные переменные,

 – стандартизированные коэффициенты:

Коэффициенты  определяются из системы уравнений:

, ;

 ;

, ;

, ;

, ;

, ;

, ;

.

Стандартизированная форма уравнения регрессии имеет вид:

.


Естественная форма уравнения регрессии имеет вид:

.

Для выяснения относительной силы влияния факторов на результативный признак рассчитываются средние коэффициенты эластичности:

,

,

.

Следовательно, при увеличении оборота капитала (x1) на 1% чистый доход (y) уменьшается на 0,14% от своего среднего уровня. При повышении использованного капитала на 1% чистый доход повышается на 0,73% от своего среднего уровня.

Линейные коэффициенты частной корреляции для уравнения определяются следующим образом:

,

.

Линейный коэффициент множественной корреляции рассчитывается по формуле


.

Коэффициент множественной детерминации .

,

где

 - объем выборки,

 - число факторов модели.

В нашем случае

.

Так как , то  и потому уравнение незначимо.

Выясним статистическую значимость каждого фактора в уравнении множественной регрессии.

Для этого рассчитаем частные -статистики.

.

Так как , то  и следует вывод о нецелесообразности включения в модель фактора  после фактора .

.

Так как , то следует вывод о нецелесообразности включения в модель фактора  после фактора .

Результаты расчетов позволяют сделать вывод :

1)      о незначимости фактора  и нецелесообразности включения его в уравнение регрессии;

2)         о незначимости фактора  и нецелесообразности включения его в уравнение регрессии.

Задание 3

1. Используя необходимое и достаточное условие идентификации, определить, идентифицировано ли каждое уравнение модели.

2. Определите тип модели.

3. Определите метод оценки параметров модели.

4. Опишите последовательность действий при использовании указанного метода.

5. Результаты оформите в виде пояснительной записки.

Модель денежного и товарного рынков:

Rt = a1+b12Yt+b14Mt+e1,

Yt = a2+b21Rt+ b23It+ b25Gt+e2,

It = a3+b31Rt+e3,

где

R – процентные ставки;

Y – реальный ВВП;

M – денежная масса;

I – внутренние инвестиции;

G – реальные государственные расходы.

Решение

1. Модель имеет три эндогенные (RtYtIt) и две экзогенные переменные (MtGt).

Проверим необходимое условие идентификации:

1-е уравнение: D=1, H=2, D+1=H - уравнение идентифицировано.

2-е уравнение: D=1, H=1, D+1=2 - уравнение сверхидентифицировано.

3-е уравнение: D=1, H=2, D+1=H - уравнение идентифицировано.

Следовательно, необходимое условие идентифицируемости выполнено.

Проверим достаточное условие:

В первом уравнении нет переменных It, Gt

Строим матрицу:

It Gt
2 ур. b23 b23
3 ур. 0 0

det M = det , rank M =2.

Во втором уравнении нет переменных Mt

det M ¹ 0

В третьем уравнении нет переменных Yt, Mt, Gt

Строим матрицу:

det M /

Следовательно, достаточное условие идентифицируемости выполнено.

Система точно идентифицируема.


Информация о работе «Решение задач по эконометрике»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 14849
Количество таблиц: 9
Количество изображений: 2

Похожие работы

Скачать
21222
13
4

... уравнения. 4.   Найти среднюю ошибку аппроксимации. 5.   Рассчитать прогнозное значение результата, если прогнозное значение факторов составит: х1 = 35 лет, х2 = 10 лет, х3 = 20 штук в смену. Решение. Для оценки мультиколлинеарности факторов используем определитель матрицы парных коэффициентов корреляции между факторами. Определим парные коэффициенты корреляции. Для этого рассчитаем ...

Скачать
22670
1
4

... а также любые колебания, в которых прослеживается закономерность. В качестве примера можно назвать модель экспоненциального сглаживания Брауна. 3. Пример проведения прогнозирования прибыли с использованием пакета SPSS Постановка задачи: Необходимо построить модель, дающую возможность предсказывать размер прибыли некоторой торговой фирмы, если известны данные о ежемесячной прибыли за последние ...

Скачать
24301
8
7

... , и , то можно предположить о правильном распределении объектов и уже существующих двух классах и верно выполненной классификации объектов подмножества М0. 3.2 Пример решения задачи дискриминантным анализом в системе STATISTICA Исходя из данных по 10 странам (рис. 3.1), которые были выбраны и отнесены к соответствующим группам экспертным методом (по уровню медицинского обслуживания), ...

Скачать
26462
1
35

... . Специалист для которого MS Excel является именно тем средством которое позволяет облегчить и ускорить его работу, должен знать и уметь использовать в повседневной работе новейшие экономико-математические методы и модели, предлагаемые новыми прикладными программами. Традиционный способ изучения экономико-математических методов заключается не только в определении их назначения и сути, ...

0 комментариев


Наверх