1.1.2 Строение железоуглеродистых сплавов
Строение железоуглеродистых сплавов определяется составом, условиями затвердевания и структурными изменениями в твёрдом состоянии.
В зависимости от содержания углерода железоуглеродистые сплавы делят на стали и чугуны. Стали с концентрацией углерода, меньшей чем эвтектоидная S' и S, называют доэвтектоидными, а более высокоуглеродистые — заэвтектоидными. Чугуны с концентрацией углерода, меньшей чем эвтектическая C1 и С, называют доэвтектическими, а более высокоуглеродистые — заэвтектическими.
Затвердевание сталей, содержащих до 0,5% С, начинается с выпадения кристаллов 8-раствора обычно в виде дендритов. При концентрациях углерода до 0,1% кристаллизация заканчивается образованием однофазной структуры d-раствора. Стали с 0,1—0,5% С после выделения некоторого количества 8-раствора испытывают перитектическое превращение Ж + d —> g. В интервале концентраций 0,10—0,16% С оно приводит к полному затвердеванию, а в интервале 0,16—0,50% С кристаллизация завершается при охлаждении до температуры линии IE. В железоуглеродистых сплавах с 0,5—4,26% С кристаллизация начинается с выделения g-раствора также в виде дендритов. Стали полностью затвердевают в интервале температур, ограниченном линиями ВС и IE, приобретая однофазную аустенитную структуру. Затвердевание же чугунов, начинаясь с выделения избыточного (первичного) gраствора, заканчивается эвтектическим распадом остатка жидкости по одному из трёх возможных вариантов: Ж ®g+ Г, Ж ® g+ Ц или Ж ® (+ Г + Ц.
В первом случае получаются т. н. серые чугуны, во втором — белые, в третьем — половинчатые. В зависимости от условий кристаллизации графит выделяется в виде разветвленных или шаровидных включений, а цементит — в виде монолитных пластин или проросших разветвленным аустенитом.
В железоуглеродистых сплавах, содержащих более 4,26—4,3% С, кристаллизация переохлажденного ниже линии D1C1 расплава в условиях медленного охлаждения начинается с образования первичного графита разветвленной или шаровидной формы. В условиях ускоренного охлаждения (при переохлаждениях ниже линии DC) образуются пластины первичного цементита. При промежуточных скоростях охлаждения выделяются и графит, и цементит. Кристаллизация заэвтектических чугунов, так же как и доэвтектических, завершается распадом остатка жидкости на смесь gраствора с высокоуглеродистыми фазами.
Строение затвердевших железоуглеродистых сплавов существенно изменяется при дальнейшем охлаждении. Эти изменения обусловлены полиморфными превращениями железа, уменьшением растворимости в нём углерода, графитизацией цементита. Структура может изменяться в твёрдом состоянии в результате процессов рекристаллизации твёрдых растворов, сфероидизации кристаллов (из неравноосных становятся равноосными), коалесценции (одни кристаллы цементита укрупняются за счёт других) высокоуглеродистых фаз.
1.1.3 Полиморфные превращения железоуглеродистых сплавов
Полиморфные превращения железоуглеродистых сплавов связаны с перестройками гранецентрированной кубической (ГЦК) решётки g-Fe и объёмноцентрированной решётки (ОЦК) a- и d-Fe.
В зависимости от условий охлаждения и нагревания полиморфные превращения твёрдых растворов происходят разными путями. При небольших переохлаждениях (и перегревах) имеет место т. н. нормальная перестройка решёток железа, осуществляющаяся в результате неупорядоченных индивидуальных переходов атомов от исходной фазы к образующейся; она сопровождается диффузионным перераспределением углерода между фазами.
При больших скоростях охлаждения или нагревания полиморфные превращения твёрдых растворов происходят бездиффузионным (мартенситным) путём. Решётка железа перестраивается быстрым сдвиговым механизмом в результате упорядоченных коллективных смещений атомов без диффузионного перераспределения углерода между фазами. Например, при закалке железоуглеродистых сплавов в воде g-раствор переходит в a-раствор того же состава. Этот пересыщенный углеродом a-раствор называют мартенситом. Превращения при промежуточных условиях могут совмещать в себе сдвиговую перестройку решётки железа с диффузионным перераспределением углерода (бейнитное превращение). Формирующиеся при этом структуры существенно различны.
В первом случае образуются равноосные с малым числом дефектов кристаллы твёрдого раствора.
Во втором и третьем — игольчатые и пластинчатые кристаллы с многочисленными двойниками и линиями скольжения. Структура железоуглеродистых сплавов изменяется также и в связи с изменением растворимости углерода в a и g-железе при охлаждении и нагревании. При охлаждении растворы пересыщаются углеродом и выделяются кристаллы высокоуглеродистых фаз (цементита и графита). При нагревании имеющиеся высокоуглеродистые фазы растворяются в a и g-фазах.
Зарождение и рост кристаллов цементита в пересыщенных растворах происходит обычно с большей скоростью, чем образование графита, и поэтому железоуглеродистые сплавы часто метастабильны. В зависимости от переохлаждения цементит, выделяющийся из твёрдого раствора, может иметь вид равноосных кристаллов, пограничной сетки, пластин и игл.
При высокотемпературных выдержках кристаллы цементита сфероидизируются; может происходить и процесс коалесценции. Если железоуглеродистые сплавы, содержащие цементит, длительно выдерживать при повышенных температурах, происходит графитизация — зарождается и растет графит, а цементит растворяется, этот процесс используется при производстве изделий из графитизированной стали и ковкого чугуна. Важную роль при формировании структуры железоуглеродистых сплавов в твёрдом состоянии играет эвтектоидный распад т-раствора на a-раствор и высокоуглеродистую фазу. При очень малых переохлаждениях образуются феррит и графит, при небольшом увеличении переохлаждения — феррит и сфероидизированный цементит, затем смесь феррита и цементита приобретает пластинчатое строение перлита, тем более тонкое, чем больше переохлаждение. При переохлаждениях, измеряемых сотнями градусов, эвтектоидный распад подавляется, и g-раствор превращается в мартенсит. Строение железоуглеродистых сплавов можно изменять в широких пределах. Основными методами управления структурой железоуглеродистых сплавов являются изменения химического состава, условий затвердевания, пластической деформации, термической и термомеханической обработок.
Меняя фазовый состав, величину, форму, распределение и дефектность кристаллов, можно широко варьировать и свойства железоуглеродистых сплавов.
Например, важнейшие при эксплуатации железоуглеродистых сплавов механические свойства изменяются в следующих пределах: твёрдость от 60 до 800 HB; предел прочности 2·104—3,5·106н/см2 (2·103—3,5·105 кгс/см2); относительное удлинение от 0 до 70%.
... Роквеллу НR Число твердости по Бринеллю НВ, кгс/мм2 Лабораторная работа № 3 Методы исследования качества, структуры и свойств металлов и сплавов Цель работы 1. Изучить сущность, возможности и методику выполнения основных видов макроструктурного и микроструктурного ...
... диаграммы соответствуют чистым компонентам сплава (железо и цементит), а между ними располагаются точки, соответствующие сплавам разной концентрации от 0 до 6,67% С Рис. 2. Структурная диаграмма состояния сплавов Fe — Fe3C. В определенных условиях химическое соединение (цементит) может не образоваться, что зависит от содержания кремния, марганца и других ...
... ? 25. В чем сущность биохимических, фотохимических, радиационно-химических, плазмохимических процессов? Указать области их применения. 26. Какие основные группы физических процессов используют в системах технологий? 27. Дать определение машиностроению как комплексной области. Какова структура машиностроительного предприятия? 28. Раскрыть сущность понятий «изделие», «деталь», «сборочная единица ...
... В упорядоченных твердых растворах сохраняется решетка растворителя, но имеется правильное расположение атомов и резное изменение свойств характерное для химических соединений. 4. Химические соединения Химические соединения и родственные им по природе фазы в металлических сплавах многообразны. Характерные особенности химических соединений: 1. Кристаллическая решетка отличается от решеток ...
0 комментариев