3.2 Химические свойства

Строение атома.

 

Рисунок 4. Схема строения атома меди.


3.2.1 Отношение к кислороду

Медь проявляет к кислороду незначительную активность, но во влажном воздухе постепенно окисляется и покрывается пленкой зеленоватого цвета, состоящей из основных карбонатов меди:

 (15)

В сухом воздухе окисление идет очень медленно, на поверхности меди образуется тончайший слой оксида меди:

(16)

Внешне медь при этом не меняется, так как оксид меди (I) как и сама медь, розового цвета. К тому же слой оксида настолько тонок, что пропускает свет, т.е. просвечивает. По-иному медь окисляется при нагревании, например при 600-800 0C. В первые секунды окисление идет до оксида меди (I), которая с поверхности переходит в оксид меди (II) черного цвета. Образуется двухслойное окисное покрытие.

Qобразования (Cu2O) = 84935 кДж.

Рисунок 5. Строение оксидной пленки меди.

3.2.2 Взаимодействие с водой

Металлы подгруппы меди стоят в конце электрохимического ряда напряжений, после иона водорода. Следовательно, эти металлы не могут вытеснять водород из воды. В то же время водород и другие металлы могут вытеснять металлы подгруппы меди из растворов их солей, например:

  (17)

Эта реакция окислительно-восстановительная, так как происходит переход электронов:

   (18)

  (19)

Молекулярный водород вытесняет металлы подгруппы меди с большим трудом. Объясняется это тем, что связь между атомами водорода прочная и на ее разрыв затрачивается много энергии. Реакция же идет только с атомами водорода.

  (20)

Медь при отсутствии кислорода с водой практически не взаимодействует. В присутствии кислорода медь медленно взаимодействует с водой и покрывается зеленой пленкой гидроксида меди и основного карбоната:

  (21)

  (22)


3.2.3 Взаимодействие с кислотами

Находясь в ряду напряжений после водорода, медь не вытесняет его из кислот. Поэтому соляная и разбавленная серная кислота на медь не действуют. Однако в присутствии кислорода медь растворяется в этих кислотах с образованием соответствующих солей:

 (23)

3.2.4 Отношение к галогенам и некоторым другим неметаллам

Q образования (CuCl) = 134300 кДж

Q образования (CuCl2) = 111700 кДж

(24)

Медь хорошо реагирует с галогенами, дает два вида галогенидов: CuX и CuX2.. При действии галогенов при комнатной температуре видимых изменений не происходит, но на поверхности вначале образуется слой адсорбированных молекул, а затем и тончайший слой галогенидов. При нагревании реакция с медью происходит очень бурно. Нагреем медную проволочку или фольги и опустим ее в горячем виде в банку с хлором – около меди появятся бурые пары, состоящие из хлорида меди (II) CuCl2 с примесью хлорида меди (I) CuCl. Реакция происходит самопроизвольно за счет выделяющейся теплоты.

Одновалентные галогениды меди получают при взаимодействии металлической меди с раствором галогенида двухвалентной меди, например:

  (25)


Монохлорид выпадает из раствора в виде белого осадка на поверхности меди.

3.2.5 Оксид меди

При прокаливании меди на воздухе она покрывается черным налетом, состоящим из оксида меди

   (26)

Его также легко можно получить прокаливанием гидроксокарбоната меди (II) (CuOH)2CO3 или нитрата меди (II) Cu(NO3)2. При нагревании с различными органическими веществами CuO окисляет их, превращая углерод в диоксид углерода, а водород – в воду восстанавливаясь при этом в металлическую медь. Этой реакцией пользуются при элементарном анализе органических веществ для определения содержания в них углерода и водорода.

Под слоем меди расположен окисел розового цвета – закись меди Cu2O. Этот же окисел получается при совместном прокаливании эквивалентных количеств меди и окиси меди, взятых в виде порошков:

  (27)

Закись меди используют при устройстве выпрямителей переменного тока, называемых купроксными. Для их приготовления пластинки меди нагревают до 1020-1050 0C. При этом на поверхности образуется двухслойная окалина, состоящая из закиси меди и окиси меди. Окись меди удаляют, выдерживая пластинки некоторое время в азотной кислоте:

(28)


Пластинку промывают, высушивают и прокаливают при невысокой температуре – и выпрямитель готов. Электроны могут проходить только от меди через закись меди. В обратном направлении электроны проходить не могут. Это объясняется тем, что закись меди обладает различной проводимостью. В слое закиси меди, который примыкает непосредственно к меди, имеется избыток электронов, и электрический ток проходит за счет электронов, т.е. существует электронная проводимость. В наружном слое закиси меди наблюдается нехватка электронов, что равноценно появлению положительных зарядов. Поэтому, когда к меди подводят положительный плюс источника тока, а к закиси меди – отрицательный, то электроны через систему не проходят. Электроны при таком положении полюсов движутся к положительному электроду, а положительные заряды – к отрицательному. Внутри слоя закиси возникает тончайший слой, лишенный носителей электрического тока, - запирающий слой. Когда же медь подключена к отрицательному полюсу, а закись меди к положительному, то движение электронов и положительных зарядов изменяется на обратное, и через систему проходит электрический ток.


Информация о работе «Железоуглеродистые сплавы. Медь и ее сплавы»
Раздел: Промышленность, производство
Количество знаков с пробелами: 58094
Количество таблиц: 1
Количество изображений: 6

Похожие работы

Скачать
206334
42
84

...  Роквеллу  НR Число твердости по Бринеллю НВ, кгс/мм2 Лабораторная работа № 3 Методы исследования качества, структуры и свойств металлов и сплавов Цель работы 1.  Изучить сущность, возможности и методику выполнения основных видов макроструктурного и микроструктурного ...

Скачать
22356
1
2

... диаграммы соответствуют чистым компо­нентам сплава (железо и цементит), а между ними располагаются точ­ки, соответствующие сплавам разной концентрации от 0 до 6,67% С Рис. 2. Структурная диаграмма состояния сплавов Fe — Fe3C.   В определенных условиях химическое соединение (цементит) может не образоваться, что зависит от содержания кремния, мар­ганца и других ...

Скачать
259162
24
61

... ? 25. В чем сущность биохимических, фотохимических, радиационно-химических, плазмохимических процессов? Указать области их применения. 26. Какие основные группы физических процессов используют в системах технологий? 27. Дать определение машиностроению как комплексной области. Какова структура машиностроительного предприятия? 28. Раскрыть сущность понятий «изделие», «деталь», «сборочная единица ...

Скачать
12773
1
6

... В упорядоченных твердых растворах сохраняется решетка растворителя, но имеется правильное расположение атомов и резное изменение свойств характерное для химических соединений. 4. Химические соединения Химические соединения и родственные им по природе фазы в металлических сплавах многообразны. Характерные особенности химических соединений: 1.  Кристаллическая решетка отличается от решеток ...

0 комментариев


Наверх