3.2.6 Гидроксиды меди
Гидроксид меди малорастворимое и нестойкое соединение. Получают его при действии щелочи на раствор соли:
(29)
Это ионная реакция и протекает она потому, что образуется плохо диссоциированное соединение, выпадающее в осадок:
(30)
Медь, помимо гидроксида меди (II) голубого цвета, дает еще гидроксид меди (I) белого цвета:
(31)
Это нестойкое соединение, которое легко окисляется до гидроксида меди (II):
(32)
Оба гидроксида меди обладают амфотерными свойствами. Например, гидроксид меди (II) хорошо растворим не только в кислотах, но и в концентрированных растворах щелочей:
(33)
(34)
Таким образом, гидроксид меди (II) может диссоциировать и как основание:
(35)
и как кислота. Этот тип диссоциации связан с присоединением меди гидроксильных групп воды:
(36)
3.2.7 Сульфаты
Наибольшее практическое значение имеет CuSO4*5H2O, называемый медным купоросом. Его готовят растворением меди в концентрированной серной кислоте. Поскольку медь относится к малоактивным металлам и расположена в ряду напряжений после водорода, водород при этом не выделяется:
(37)
Медный купорос применяют при электролитическом получении меди, в сельском хозяйстве для борьбы с вредителями и болезнями растений, для получения других соединений меди.
3.2.8 Карбонаты
Карбонаты для металлов подгруппы меди не характерны и в практике почти не применяются. Некоторое значение для получения меди имеет лишь основной карбонат меди, который встречается в природе.
3.2.9 Качественные реакции на ионы меди
Ион меди можно открыть, прилив к раствору ее соли раствор аммиака. Появление интенсивного сине-голубого окрашивания связано с образованием комплексного иона меди
(38)
Медь интенсивно окрашивает пламя в зеленый цвет.
3.3 Сплавы
3.3.1 Латуни
Это двойные и многокомпонентные медные сплавы, в которых основной легирующий компонент — цинк (содержание не превышает 45 %). Среди медных сплавов латуни получили наибольшее распространение в промышленности благодаря сочетанию высоких механических и технологических свойств. По сравнению с медью латуни обладают более высокой прочностью, коррозионной стойкостью, лучшими литейными свойствами, имеют более высокую температуру рекристаллизации. Латуни — наиболее дешевые медные сплавы.
Двойные (простые) латуни относятся к системе Cu—Zn (рис. 19.3). Медь с цинком образует кроме a -твердого раствора на основе меди ряд промежуточных фаз b, g и т. д.
Фаза b — это твердый раствор на основе электронного соединения CuZn (фаза Юм—Розери) с решеткой ОЦК. При охлаждении при температуре около 450 ° С b -фаза переходит в упорядоченное состояние (b ® b ¢), причем b ¢ -фаза в отличие от b -фазы является более твердой и хрупкой.
Фаза g — твердый раствор на основе электрон-ного соединения Cu5Zn8 отличается очень высокой хрупкостью и ее присутствие в промышленных конструкционных сплавах исключается.
Механические свойства латуни определяются свойствами фаз. По мере увеличения содержания цинка в латунях их прочность возрастает (рис. 19.4). Максимум прочности достигается в двухфазной области (a + b) при содержании цинка около 45 %. При большем содержании цинка прочность резко уменьшается из-за высокой хрупкости b ¢ -фазы. Поэтому в промышленности применяют преимущественно a - и (a + b)-латуни. Представляют интерес как основа сплавов с эффектом памяти формы b -латуни.
Все латуни, содержащие более 20 % Zn, склонны к коррозионному растрескиванию. Это растрескивание проявляется при хранении и эксплуатации изделий, в которых имеются остаточные растягивающие напряжения, во влажной атмосфере с небольшим количеством аммиака или сернистого газа. Установлена определенная связь между данным явлением и временем года, что объясняется закономерными изменениями состава атмосферы. В связи с этим это явление было названо «сезонным растрескиванием» («сезонная болезнь»). Другой формой коррозии латуни является обесцинкование, которое характерно для латуней с повышенным содержанием цинка (Л68, ЛС59-1 и др.). Высокомедистые латуни практически не подвергаются обесцинкованию. Для уменьшения обесцинкования в латуни вводят небольшое количество мышьяка (0,02–0,06 %).
В России принята буквенно-цифровая маркировка латуней, в которой буквы обозначают основные компоненты сплава, числа — их примерное содержание в процентах. Марка латуни начинается с буквы «Л». В двойных (простых) латунях число после буквы «Л» определяет среднее содержание меди. В марках многокомпонентных латуней после буквы «Л» указаны легирующие элементы, которым даны следующие обозначения: О — олово; А — алюминий; Н — никель; К — кремний; Ж — железо и т. д. Порядок букв и чисел в деформируемых и литейных латунях различен. В деформируемой латуни первое число после букв указывает среднее содержание меди, последующие числа, отделенные через тире, указывают среднее содержание легирующих элементов. Например, латунь ЛА77-2 имеет следующий состав: 77 % Cu, 2 % Al, остальное Zn. В литейных латунях среднее содержание компонентов сплава указывается сразу после буквы, обозначающей его название; цинк обозначается буквой «Ц». Например, литейная латунь ЛЦ30А3 содержит 30 % Zn, 3 % AL, Cu — основа.
... Роквеллу НR Число твердости по Бринеллю НВ, кгс/мм2 Лабораторная работа № 3 Методы исследования качества, структуры и свойств металлов и сплавов Цель работы 1. Изучить сущность, возможности и методику выполнения основных видов макроструктурного и микроструктурного ...
... диаграммы соответствуют чистым компонентам сплава (железо и цементит), а между ними располагаются точки, соответствующие сплавам разной концентрации от 0 до 6,67% С Рис. 2. Структурная диаграмма состояния сплавов Fe — Fe3C. В определенных условиях химическое соединение (цементит) может не образоваться, что зависит от содержания кремния, марганца и других ...
... ? 25. В чем сущность биохимических, фотохимических, радиационно-химических, плазмохимических процессов? Указать области их применения. 26. Какие основные группы физических процессов используют в системах технологий? 27. Дать определение машиностроению как комплексной области. Какова структура машиностроительного предприятия? 28. Раскрыть сущность понятий «изделие», «деталь», «сборочная единица ...
... В упорядоченных твердых растворах сохраняется решетка растворителя, но имеется правильное расположение атомов и резное изменение свойств характерное для химических соединений. 4. Химические соединения Химические соединения и родственные им по природе фазы в металлических сплавах многообразны. Характерные особенности химических соединений: 1. Кристаллическая решетка отличается от решеток ...
0 комментариев