6. Влияние легирующих элементов на свойства инструментальных сталей

Легирующие элементы в небольшом количестве (до 5%) вводят для увеличения закаливаемости, прокаливаемости, уменьшения деформаций и опасности растрескивания инструмента, так как позволяют проводить закалку в масле или горячих средах. Хром – постоянный элемент низколегированных сталей. Для улучшения свойств в них дополнительно вводят марганец, кремний, вольфрам, никель.

Марганец (1–2%) добавляют для обеспечения минимального изменения размеров при закалке. Интенсивно снижая интервал температур мартенситного превращения, он способствует сохранению повышенного количества остаточного аустенита (15–20%), который частично или полностью компенсирует увеличение объема в результате образования мартенсита. Кремний (1–1,5%) вводят для повышения сопротивления отпуску и образования легко отделяющейся окалины, вольфрам (1–5%) – повышения износостойкости. Никель (до 1,5%) добавляют в штамповые стали для увеличения вязкости.

Для обеспечения теплостойкости вводят хром, вольфрам или молибден в большом количестве с тем, чтобы связать углерод в специальные труднокоагулируемые при отпуске карбиды. Если содержание элементов невелико и образуется легированный цементит, то он коагулирует и вызывает разупрочнение при 200–250°С. Хром в количестве 6–12%, связывая углерод в карбид М7С3, задерживает распад мартенсита до 450–500°С. Более существенно повышает теплостойкость вольфрам или его химический аналог молибден, образующие в присутствии, хрома стойкие к коагуляции карбиды типа M6C. Выделение специальных карбидов повышает твердость после отпуска при 500–600°С. Особенно эффективно вторичная твердость и теплостойкость повышаются при введении нескольких сильных карбидообразователей, например, вольфрама и ванадия. При отпуске ванадий, выделяясь более интенсивно, усиливает дисперсионное твердение, а вольфрам, сохраняясь в мартенсите, задерживает его распад.

Увеличению теплостойкости способствует также кобальт. Он не образует карбидов, но, повышая энергию межатомных сил связи, затрудняет коагуляцию карбидов и увеличивает их дисперсность.

Для обеспечения высокой износостойкости используют легированные стали со значительным количеством избыточных карбидов – заэвтектоидные и ледебуритные. Благодаря избыточным карбидам эти стали сохраняют мелкое зерно и, как следствие, повышенную прочность и вязкость в широком интервале закалочных температур (до 1000–1300°С). Вместе с этим большое количество избыточных карбидов ухудшает обрабатываемость давлением и резанием, создает карбидную неоднородность. Скопления карбидов, карбидная сетка и полосчатость усиливают хрупкость, вызывают преждевременное выкрашивание рабочих кромок. Для равномерного распределения карбидов такие стали требуют всесторонней и тщательной ковки заготовок.

7. Инструментальные металлокерамические твердые сплавы

Металлокерамическими твердыми сплавами называются сплавы, состоящие из карбидов вольфрама и титана, сцементованных металлической связкой. Сильно измельченные частицы карбидов связываются между собой кобальтом.

Карбиды вольфрама и особенно титана обладают высокой твердостью, но хрупки. Поэтому металлокерамические сплавы, содержащие 70–98% карбидов, также имеют высокую твердость (HRC 86–92) и износостойкость, но хрупки, плохо сопротивляются изгибу и растяжению. При работе, связанной с ударами и толчками, сплав легко выкрашивается.

Твердые сплавы сохраняют высокую твердость и сопротивление износу до температуры 800–1000°С. При работе инструментами из твердых сплавов можно допустить разогрев режущей кромки до более высоких температур, чем у инструмента из быстрорежущей стали, т.е. инструмент из твердых сплавов может работать при более высоких скоростях резания. Скорость резания этими сплавами в 5–10 раз превышает допустимую скорость резания быстрорежущими сталями. Промышленность выпускает твердые сплавы трех групп (ГОСТ 3882).

Группа ВК – вольфрамокобальтовые, на основе карбида вольфрама WC (система WC–Со). Цифры после букв указывают содержание в сплаве кобальта. По своему структурному составу сплавы представляют собой частицы карбида вольфрама WC, связанные кобальтом. Эти сплавы наиболее прочные: sв = 100–200 кГ/мм2.

Наибольшей твердостью (HRA 90 – 89) и износостойкостью, но пониженными прочностью (sв = 100–110 кГ/мм2) и сопротивлением удару (0,2 кГ×м/см2 для ненадрезанных образцов) обладают сплавы ВК2 и ВК3. Они используются для чистового и получистового фрезерования сплошных поверхностей, для чистового зенкерования и т.д., при обработке чугуна, цветных металлов и неметаллических материалов. Сплавы ВК6 и ВК8, содержащие повышенное количество кобальта, имеют по сравнению со сплавами ВК2 и ВКЗ пониженную твердость (HRA 88–87,5) и износостойкость, но обладают высокой эксплуатационной прочностью и сопротивляемостью ударам (0,5 кГ×м/см2), вибрациям и выкрашиванию (особенно ВК8). Эти сплавы применяют для чернового точения, строгания, фрезерования и сверления чугуна, цветных металлов и их сплавов, а также неметаллических материалов. Сплавы с высоким содержанием кобальта ВК20, ВК30 применяют для штампов и инструментов для горных работ.

Вторая группа сплавов ТК – титановольфрамокобальтовые (система WC – TiC – Со) Т5К10, Т14К8, Т15К6, Т10К6. Цифры после буквы Т указывают весовое количество карбида TiC, цифры после буквы К – весовое содержание кобальта (остальное WC).

Структура этих сплавов состоит из карбидов вольфрама WC и титана TiC, связанных кобальтом, а при высоком содержании TiC (T30K4) – из карбида титана и кобальта, так как вольфрам и углерод растворяются в карбиде титана. Сплавы ТК менее прочны, чем сплавы ВК, но обладают большей износостойкостью. Чем больше сплав содержит TiC, тем выше износостойкость, но ниже прочность. Так, например, у сплава Т30К4 прочность sв = 90 кГ/мм2, а у сплава Т5К10 прочность sв = 130 кГ/мм2. Титановольфрамовые сплавы применяют главным образом при обработке сталей.

Кроме того, в обозначении сплава может стоять буква В-крупнозернистый сплав (размер зерен карбидов 3–5 мкм) и М – мелкозернистый (размер зерен 0,1–0,16 мкм).

Наибольшей эксплуатационной прочностью, сопротивляемостью ударным нагрузкам и выкрашиванию, но пониженной износостойкостью обладают сплавы Т5К10 и Т14К8. Напротив, сплавы Т60К6 и Т30К4 обладают высокой износостойкостью, но пониженной эксплуатационной прочностью и сопротивляемостью ударам и выкрашиванию. Твердость этой группы сплавов от HRA 88,5 (Т5К10) до HRA 92 (Т30К4). Для чистовой и получистовой обработки сталей используют сплавы Т30К4, Т15К6, для получистовой и черновой обработки – Т14К8 и Т5К10, а для черновой обработки и обдирки стальных слитков и поковок – Т5К12В.

Третья группа сплавов ТТК – титанотанталовольфрамокобальтовые (система WC – TiC – ТаС – Со), например сплав ТТК12. Цифра после букв ТТ показывает суммарное содержание TiC + ТаС, а после буквы К – количество кобальта. Сплав ТТ7К12 используется для тяжелой черновой обработки стальных поковок. Эти сплавы имеют более высокую прочность (sв = 155 кГ/мм2), чем сплавы ТК. Твердые сплавы изготовляют в виде пластин, прикрепленных к державке, изготовленной из обычной стали, или инструментов простой формы.

Металлокерамические твердые сплавы получают не сплавлением, а спеканием. Для этой цели сначала приготовляют порошки WC и TiC, которые смешивают в определенной пропорции с порошком кобальта. Смесь порошков прессуют под давлением 500–2000 кГ/мм2 в формах, соответствующих размерам и форме пластинок (заготовки инструмента). Затем пластинки подвергают спеканию при высокой температуре (1400–1450°С).


Литература

1. «Основы материаловедения». И.И. Сидорин, Г.Ф. Косолапов, В.И. Макарова и др. Под ред. И.И. Сидорина. – М.: Машиностроение. – 1976, 436 с.

2. «Материаловедение». Ю.М. Лахтин, В.П. Леонтьева. – М.: Машиностроение. – 1972, 510 с.

3. Гуляев А.П. Металловедение. М., 1986.


Информация о работе «Инструментальные стали. Стали для измерительного инструмента. Штамповые стали. Твердые сплавы»
Раздел: Промышленность, производство
Количество знаков с пробелами: 23938
Количество таблиц: 0
Количество изображений: 2

Похожие работы

Скачать
65021
2
0

... относят к определенной группе отраслей промышленности – твердые безвольфрамовые сплавы – один из продуктов перерабатывающей промышленности. Потребительские свойства безвольфрамовых твердых сплавов Наиболее важными свойствами металлокерамических твердых сплавов являются: твердость, вязкость, стойкость на истирание, удельный вес, теплопроводность и красностойкость. Все эти свойства тесно ...

Скачать
22178
1
4

... материалы, твёрдость и износоустойчивость которых превышает твёрдость и износоустойчивость твёрдых сплавов на основе карбидов вольфрама и титана с кобальтовой связкой карбидотитановых сплавов на никель-молибденовой связке. Широко применяемые сверхтвердые материалы: электрокорунд, оксид циркония, карбид кремния, карбид бора, боразон, диборид рения, алмаз. Сверхтвёрдые материалы часто применяются в ...

Скачать
133990
34
13

... этапе является более дешевым оборудованием, чем молот. 3. При внедрении и реализации нового технологического процесса штамповки детали типа "фланец" их хромоникелевого жаропрочного сплава уменьшается количество технологических операций, уменьшается суммарная трудоемкость процесса. 4. В рамках разработки нового технологического процесса проведены основные технологические расчеты: определена ...

Скачать
71979
10
6

... + 60 + 10 = 190 мин. Температура нагрева 560 оС. Рисунок 1.5 – Схема термической обработки дисковых фрез. 1.4.5 Разработка и описание технологической карты термической обработки деталей Технологическая карта – часть маршрутной технологии, это основной документ термического участка, в которой указан маршрут перемещения деталей по участку. Дисковые фрезы подаются на термический участок ...

0 комментариев


Наверх