4.3 Статический расчет

Изгибающие моменты в сечениях ригеля определяются с учётом перераспределения усилий. Подсчёт ординат огибающей эпюры производится по формуле:

 

Mi=βi∙q∙l02

Мi – изгибающий момент, кН∙м;

βi – коэффициент определённый по данным рис. 3 [2]

l0 –расчётный пролёт среднего ригелей, м.

M+6 = β6 ∙ q · l02 = 0,018 80,2 · 6 2 = 51,97 кН · м

M+7 = β7 ∙ q · l02 = 0,058 ·80,2 ·6 2 = 167,46 кН · м

M+max = βmax ∙ q · l02 = 0,0625·80,2 ·6 2 = 180,45 кН · м

M5 = β5 ∙ q · l02 = -0,091 ·80,2 ·6 2 = -262,74 кН · м

M6 = β6 ∙ q · l02 = -0,041 ·80,2 ·6 2 = -118,38 кН · м

M7 = β7 ∙ q · l02 = -0,014 ·80,2 ·6 2 = -40,42 кН · м

 

4.4 Расчет по предельным состояниям первой группы

 

4.4.1 Исходные данные

Для ригелей рекомендуется: применять бетоны классов В20-В30, рабочую арматуру - из арматурной стали класса А-III, поперечную – из арматурной стали классов А-III или А-II.

4.4.2 Расчет прочности нормальных сечений

По максимальному значению изгибающего момента уточняется размер поперечного сечения ригеля. Ввиду определения изгибающих моментов с учётом образования пластических шарниров значения коэффициентов ξ и α0 ограничиваются соответственно величинами 0,25 и 0,289 в опорном сечении.

По принятым значениям параметров сечения ригеля проверяется условие:

Полезная (рабочая) высота сечения ригеля, см. h0 = h – a = 70 – 5= 65 см

h = 70 см – принятая высота сечения, см;

b = 30 см – ширина сечения ригеля, см;

а – 5 см при расположении арматуры в два ряда;

а – 3 см при расположении арматуры в один ряд;

М – наибольший по абсолютной величине опорный изгибающий момент, Н см.


Принимаем:

h = 60 см – принятая высота сечения, см;

b = 25 см – ширина сечения ригеля, см;

h0 = h – a = 60 – 5= 55 см

Подбор требуемого сечения производим в следующем порядке:

·       На опоре.

По табл. 7 [2] определяется относительное плечо внутренней пары сил ν = 0,843

Определяется требуемая площадь сечения продольной арматуры, см2;

По сортаменту [2, табл. 8] подбираем необходимое количество стержней арматуры с площадью As ≥ As1 и диаметром не менее 12 мм.

Принимаю 3 Ø 28 А–III с Афs = 18,47 см2

·       В пролёте.

По табл. 7 [2] определяется относительное плечо поперечной силы ν = 0,898

Определяется требуемая площадь сечения продольной арматуры, см2;

По сортаменту [2, табл. 8] подбираем необходимое количество стержней арматуры с площадью As ≥ As1 и диаметром не менее 12 мм.

Принимаю 4 Ø 18 А–III с Афs = 10,18 см2

·       Монтажная арматура.

По табл. 7 [2] определяется относительное плечё поперечной силы ν = 0,995

Определяется требуемая площадь сечения продольной арматуры, см2;

По сортаменту [2, табл. 8] подбираем необходимое количество стержней арматуры с площадью As ≥ As1 и диаметром не менее 12 мм.

Принимаю 2 Ø 20 А–III с Афs = 6,28 см2

 

4.4.3 Построение эпюры материалов

Для двухрядной арматуры:

а = 5 см

h0 = h – a = 60 –5 =55 см

1-1:

Определение высоты сжатой зоны, см.


Определяется несущая способность сечения, Н∙см,

Мu1 = Rb ∙ b · х ∙ (h0 – 0,5 · x) ∙ 100 = 13,05 · 25 · 11,39 ·(55 – 0,5 · 11,39) · 100 = 183,22 · 105кН · м

Определение высоты сжатой зоны, см.

Определяется несущая способность сечения, Н∙см,

 

Мu2 = Rb ∙ b · х ∙ (h0 – 0,5 · x) ∙ 100 = 13,05 · 25 · 5,69 ·(55 – 0,5 · 5,69) · 100 96,82 · 105кН · м

 

Для однорядной арматуры:

 

а = 3 см

h0 = h – a = 60 –3 =57 см

3-3:

Определение высоты сжатой зоны, см.

Определяется несущая способность сечения, Н∙см,

 

Мu3 = Rb ∙ b · х ∙ (h0 – 0,5 · x) ∙ 100 = 13,05 · 25 · 7,03 ·(57 – 0,5 · 7,03) · 100 = 122,67 · 105кН · м

4-4:

Определение высоты сжатой зоны, см.

Определяется несущая способность сечения, Н∙см,

 

Мu4 = Rb ∙ b · х ∙ (h0 – 0,5 · x) ∙ 100 = 13,05 · 25 · 20,66 ·(57 – 0,5 · 20,66) · 100 = 314,57 · 105кН · м


5. Проектирование колонны первого этажа

 

5.1 Конструктивная схема

Колонны многоэтажных промышленных зданий состоят из сборных ж/б элементов длиной, кроме элемента 1-го этажа, равной высоте этажа. Для опирания ригелей перекрытия колонны снабжены консолями. Стыки элементов колонн для удобства работ по соединению устраиваются на расстоянии 500—800 мм выше уровня панелей перекрытия.


Информация о работе «Проектирование сборных железобетонных плит перекрытия, ригелей и колонн многоэтажного производственного здания»
Раздел: Строительство
Количество знаков с пробелами: 27905
Количество таблиц: 5
Количество изображений: 17

Похожие работы

Скачать
76232
5
23

... устойчивость и прочность Значение изгибающих моментов и продольных усилий принимается по результатам статического расчета поперечной рамы. Колонны принимаются двухэтажной разрезки. Колонны многоэтажного каркасного здания с жесткими узлами рассматриваются как элементы поперечной рамы и рассчитываются как внецентренно сжатые элементы от совместного действия изгибающих моментов и продольных сил. ...

Скачать
35029
2
5

... стержней слева 2Ø28 А300: 504 мм < 20d = 560 мм справа 2Æ36 A-II (А300) 629 мм < 20d = 720 мм Принято W1= 500 мм; W2 = 550 мм; W3 = 600 мм; W4 = 750 мм. 6. Расчет сборной железобетонной колонны Сетка колонн  м Высота этажей между отметками чистого пола – 3.3 м. Нормативное значение временной нагрузки на междуэтажные перекрытия 8.5 кH/м2, расчетное значение ...

Скачать
31806
2
50

... . 1). Размеры рядовой плиты 6,0 × 1,6 м. Таблица 1 Вид нагрузки Нормативная нагрузка (Н/м2) γf Расчетная нагрузка (Н/м2) 1.Постоянная: 1.1. Собств. Вес плиты 2000 1,1 2200 1.2. Конструкция пола 900 1,3 1170 Итого постоянная 2900 - 3370 2.Временная: 7000 1,2 8400 2.1. в т.ч. кратковременная 2000 1,2 2400 2.2. в т.ч. длительная 5000 1,2 ...

Скачать
103427
25
24

... 1991. - 767 с. 7.  Бондаренко В.М., Римшин В.И. Примеры расчёта железобетонных и каменных конструкций: Учеб. пособие. - М.: Высш. шк., 2006. - 504 с. 8.  Тимофеев Н.А. Проектирование несущих железобетонных конструкций многоэтажного промышленного здания: Метод. указания к курсовой работе и практическим занятиям для студентов спец. "Строительство ж. д., путь и путевое хозяйство". - М.: МИИТ, 2004. ...

0 комментариев


Наверх