2.3 ПОСТРОЕНИЕ ИНДИКАТОРНОЙ ДИАГРАММЫ ДВИГАТЕЛЯ
Индикаторная диаграмма двигателя - это графическое представление процессов, составляющих рабочий цикл двигателя в координатах P-V. Давление рабочего тела Р откладываем по оси ординат, а объем занимаемый им в цилиндре двигателя V - по оси абсцисс. Поскольку этот объем является линейной функцией перемещения поршня, то для удобства часто давление откладываем как функцию перемещения (хода) поршня (S). Масштабы по осям выбираем удобными с точки зрения построения и дальнейшего считывания с графика изображенных величин. Например, для давления p = 0,05 МПа/мм. Соотношение масштабов по осям рекомендуется принимать так, чтобы высота диаграммы в 1,4...1,7 раза превышала ее основание.
В курсовой работе рекомендуется при построении индикаторной диаграммы пользоваться относительным объемом Vx = V/Vа . То есть, точка В (рис. 1), соответствующая полному объему цилиндра по оси абсцисс имеет координату равную 1, а точка А, соответствующая объему камеры сгорания координату 1/x. Отрезок ОА соответствующий объему камеры сгорания в этом случае равен: ОА = АВ/(e-1) (60)
Политропы сжатия и расширения можно строить графическими или аналитическим методом. Используем аналитический метод, при котором координаты промежуточных точек рассчитываем по формулам:
- для политропы сжатия: (61)
- для политропы расширения: (62)
Результаты расчета удобно представить в виде таблицы 2.
Отложив и соединив тонкими линиями все расчетные точки получим расчетную индикаторную диаграмму. Для получения действительной индикаторной диаграммы необходимо "скруглить" расчетную на участках, изображающих процессы сгорания и выпуска-впуска так как показано на рис 1/x. С учетом углов впрыска и воспламенения топлива, открытия и закрытия клапанов.
Таблица 2. Результаты расчета политроп сжатия и расширения
Vx=V/Va | 1 | 0,667 | 0,5 | 0,333 | 0,2 | 0,125 | 0,1 | 1/d | 1/x | |
1/Vx | 1 | 1,5 | 2 | 3 | 5 | 8 | 10 | d | e | |
сжат. | рx=рa(1/Vx)n1 | 0,090 | 0,150 | 0,230 | 0,400 | 0,810 | 1,550 | 2,100 | 2,310 | 4,190 |
расш. | рx=рb(1/Vx)n2 | 0,326 | 0,540 | 0,790 | 1,320 | 2,540 | 4,640 | 6,170 | 6,710 | 6,710 |
3 ДИНАМИЧЕСКИЙ РАСЧЕТ КРИВОШИПНО-ШАТУННОГО МЕХАНИЗМА
Расчет состоит в определении основных сил, действующих в КШМ и определении параметров маховика.
Исходными данными для расчета являются: результаты теплового расчета двигателя, конструктивный прототип двигателя, значение номинальной эффективной мощности, полученной в тяговом расчете трактора, или автомобиля и значение номинальной частоты вращения коленчатого вала.
По результатам расчета необходимо выполнить следующие листы графической части: 1лист - диаграмма газовых, инерционных и суммарных сил; 2лист - диаграммы сил N,Рш,K' и T, действующих в КШМ; 3 лист -диаграмма суммарного крутящего момента.
3.1 РАСЧЕТ УСИЛИЙ ДЕЙСТВУЮЩИХ В КШМ
Определение усилий, действующих в КШМ, необходимо для расчета деталей двигателя на прочность и определения нагрузок на подшипники. При расчете КШМ силы трения и тяжести не учитываем и принимаем, что коленвал вращается с постоянной угловой скоростью, а картер неподвижен. Таким образом, основные силы при расчете деталей КШМ - силы давления газов и инерции движущихся масс. Схема сил, действующих в КШМ, приведена на рис. 2.
Так как на поршень во внутренней полости картера действует атмосферное давление, то избыточное давление газов на поршень определяем
pг = p x - p о , (62)
где p x - текущее абсолютное давление газов в цилиндре ( определяется по индикаторной диаграмме), МПа;
pо - атмосферное давление (pо = 0,1 МПа).
Вдоль оси цилиндра на поршень действует сила давления газов и силы инерции возвратно-поступательное движущихся масс. Суммарное усилие по оси цилиндра, действующее на поршневой палец (кН):
Рå = Рг + Рj , (63)
где Рг - силы давления газов, кН;
Рj - силы инерции возвратно-поступательно движущихся масс. Силы давления газов определяются (кН):
, (64)
где px - текущее значение давления по индикаторной диаграмме, МПа;
D - диаметр цилиндра, м.
Для облегчения определения РΣ и дальнейшего динамического расчета КШМ свернутую индикаторную диаграмму в координатах p, V преобразуем в развернутую диаграмму в координатах pг , a.
Построение развернутой индикаторной диаграммы рекомендуется производить с использованием приближенного уравнения для перемещения поршня относительно верхней мертвой точки:
Sx = R ((1+l/4)-(COSj+(l/4COS2j)) , (65)
где l= R/Lш - кинематический параметр КШМ (принимаем по прототипу двигателя).
Решая уравнение (82) для разных j , определяем соответствующие им Sx.
Причем достаточно произвести расчет для j =(0...180), так как Sx является симметричной функцией относительно точки j=1800 и имеет период 3600.
Полученные результаты заносим в таблицу 5. Отрезки по вертикали из точек Sx, соответствующих определенным j до пересечения с кривыми свернутой индикаторной диаграммы в масштабе mp указывают текущее значение px.По выражению (81) определяем Рг, используя полученные значения px.
Таблица 5. Результаты расчетов для построения развернутой индикаторной диаграммы
j, град | впус | 0 | - | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 |
сжат | 360 | - | 340 | 320 | 300 | 280 | 260 | 240 | 220 | 200 | - | |
расш | 370 | 380 | 400 | 420 | 440 | 460 | 480 | 500 | 520 | 540 | ||
вып | 720 | - | 700 | 680 | 660 | 640 | 620 | 600 | 580 | 560 | - | |
Sx/S | 0 | 0,012 | 0,038 | 0,145 | 0,300 | 0,480 | 0,650 | 0,800 | 0,910 | 0,977 | 1 | |
px,MПа | впук. | 0,115 | - | 0,100 | 0,097 | 0,090 | 0,090 | 0,090 | 0,090 | 0,090 | 0,090 | 0,090 |
сжат. | 4,205 | - | 2,270 | 0,760 | 0,650 | 0,230 | 0,130 | 0,110 | 0,100 | 0,950 | - | |
расш. | - | 6,728 | 6,700 | 2,450 | 1,250 | 0,760 | 0,600 | 0,400 | 0,350 | 0,330 | 0,326 | |
вып. | 0,115 | 0,115 | 0,115 | 0,115 | 0,115 | 0,115 | 0,150 | 0,150 | 0,230 | - |
Рекомендуется расчет вести через 200, включив также угол 3700 (угол при котором px = pmax )
Возможно преобразования диаграммы производить графическим методом Брикса, описание которого приведено в литературе.
Как и в первом способе заполняем таблицу 5.
Силы инерции возвратно-поступательно движущихся масс (Кн):
Pj = -m j Rw2 (cos j+ lcоs2j)10 -3, (66)
где mj - приведенная масса возвратно-поступательно движущихся частей КШМ, кг;
R - радиус кривошипа, м;
w- угловая скорость колен вала, рад/с;
j- угол поворота колен вала, град.
Началом цикла работы двигателя считается ВМТ поршня в начале процесса впуска (j= 0). Приведенная масса возвратно-поступательно движущихся частей состоит из массы комплекта поршня и части массы шатуна:
mj = mп + (0,2...0,3)mш , (67)
где m п. - масса комплекта поршня, кг;
m ш - масса условно возвратно-поступательно движущейся части шатуна, кг.
Масса m j считается сосредоточенной в центре поршневого пальца. В работе mп и m ш определяются:
, (68)
, (69)
где m`п и m`ш - удельные массы, соответственно поршня и шатуна прототипа расчетного двигателя (приложение 6), кг/м2 .
Угловая скорость коленвала (рад/с):
w= 2 pn е н (70)
В работе текущие значения сил Рj, Рr и Рå в зависимости от угла поворота заносим в таблицу 6, причем Рå определяем алгебраическим сложением Рr и Рj . Зависимость På = f(j) можно определить как графическим методом так и аналитическим. В курсовой работе рекомендуется использовать аналитический метод, который при примерно равной с графическим методом трудоемкости обеспечивает большую точность.
Таблица 6. Результаты динамического расчета КШМ
j | Pг | Рj | På | Pш | N | K | T | Mi = RT 103 |
град | кН | кН | кН | кН | кН | кН | кН | Нм |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
0 | ||||||||
20 | ||||||||
720 |
Суммарная сила Рå, действующая по оси цилиндра и приложенная к оси поршневого пальца, раскладывается на две составляющие по закону параллелограмма:
- нормальную N = På tgb , (88)
и силу S, действующую по оси шатуна
, (89)
Угол наклона оси шатуна к вертикали b считается со знаком "+", если шатун отклоняется в сторону движения кривошипа, и со знаком "-" при отклонении в противоположную сторону.
b= arcsin (lsin j) (90)
От действия силы S через шатун на шатунную шейку коленвала возникают силы:
-радиальная (91)
-тангенциальная (92)
На шатунную шейку также действует центробежная сила К:
K||= (0,7...0,8) mш Rw 2 (93)
Силы К | и К || направлены по одной прямой, в связи с чем их равнодействующая:
К = К | + К || (94)
Радиальная сила считается положительной, если действует к оси вращения коленвала и отрицательной, если - от оси вращения (К " - всегда отрицательна). Тангенциальная сила положительна, когда действует по направлению вращения коленвала и отрицательна, если - против направления вращения.
Для сокращения объема расчетов значения входящих в уравнения тригонометрических функций [(cos j + l cos2j ), sin( j + b )/cos b , cos(j+b )/cos b и другие ] берем из заранее составленных таблиц (приложение 7...11). Значения сил обычно берутся через 20о поворота кривошипа. Все данные расчетов сводим в таблицу 6. Следует в таблице рассчитать независимо от шага углаj, значения сил, соответствующих точке наибольшего давления по индикаторной диаграмме точке Z и точке в 370. В этой же таблице следует привести значения крутящего момента одного цилиндра.
Необходимо в курсовой работе также привести графики сил, действующих в КШМ: Рг , Рj , РΣ , S, N, K` , T (рис. 3).
В курсовой работе предполагается выполнение данного расчета с применением ПЭВМ, в частности, с использованием пакетов программ EXSEL, Super Callk.5 , Quadropro и т.п.
... в различных дорожных условиях. Тяговым принято считать режим, при котором от двигателя к ведущим колесам подводится мощность, достаточная для преодоления внешних сопротивлений движения. Показатели тягово-скоростных свойств автомобиля (максимальная скорость, ускорение при разгоне или замедление при торможении, сила тяги на крюке, эффективная мощность двигателя, подъем, преодолеваемый в различных ...
... частоты вращения коленчатого вала ,часового и удельного эффективного расходов топлива в зависимости от скоростного и нагрузочного режимов двигателя, работающего на регуляторе. Чаще всего регуляторную характеристику строим как зависимость названных параметров от частоты вращения коленчатого вала и крутящего момента двигателя. Регуляторная характеристика двигателя имеет две ветви: непосредственно ...
... (1.13) Передаточные числа трансмиссии на остальных передачах основного ряда определяются через знаменатель геометрической прогрессии , , , , . 1.10 Расчет и построение теоретической тяговой характеристики трактора Исходными данными для тягового расчета трактора являются текущие значения крутящего момента , частоты вращения и часового расхода топлива при работе дизеля по внешней ...
... непроизводительные затраты мощности на механические потери в трансмиссии, перекатывание и буксование движителей трактора. Таблица 3. Баланс мощности и потенциальная тяговая характеристика трактора ДТ-75М Показатель Результаты расчетов jкр*) 0 0,10 0,20 0,30 0,40 0,45 0,50 0,55 0,60 0,65 0,669 d, % 0,2 0,5 0,9 1,5 2,2 2,6 3,1 3,9 5,0 7,6 13,9 Pкр, кН 0 9,6 ...
0 комментариев