2. Характеристика областей існування структур сфалериту і в’юрциту

Cтруктура в’юрциту для ZnS – стійка при високих температурах. Фазовий перехід із гексагональної модифікації ZnS в кубічну проходить при температурах 1020 і 1150 0С [2]. В [4] показані поліморфні пари, зв’язані переходом під тиском, які зачіпають зміну першої координації для ZnO тиск переходу 100 кбар: низькотемпературна форма – в’юрцит, перша координація 4:4; високотемпературна форма – NaCl, перша координація 6:6. Для СdS тиск переходу 20 кбар: низькотемпературна форма – сфалерит,перша координація 4:4; високотемпературна форма – NaCl, перша координація 6:6. Зміна другої координації для CdS проходить при тиску 160-200 кбар, при низькому тиску структурний тип сфалерит; привисокому тиску в’юрцит. Для CdS структурна зміна при збільшені тиску обернена тій, яка викликається пониженням температури.

Перехід із тетраедричної до октаедричної координації супроводжується зменшенням об’єму приблизно на 20 %. Незалежно від того чи має вихідний матеріал структуру в’юрциту чи цинкової обманки, при зворотньому переході до атмосферного тиску зберігається структура цинкової обманки [2].

Можливість зв’язати тип стабільної структури А2В6 з співвідношенням іонності і ковалентності хімічного зв’язку розроблено авторами [5] (табл. 3).

Таблиця 3

Зв’язок стабільні структури А2В6  з коефіцієнтом іонності

А2В6

l,% Стабільна структура D(с/а)

А2В6

l,% Стабільна структура D(с/а)
ZnO 82 W -293 ZnSe 33 S +65
CdS 45 W -103 CdTe 21 S +68
CdSe 40 W -24 ZnTe 16 S +81
ZnS 40 S +33

Як відомо, різниця в енергіях двох поліморфних модифікацій – в’юрцита і сфалериту, яка б мала вона не була, буде обумовлена різним вкладом іонності, про що свідчить порівняння їх констант Маделунга. Вони є мірою електростатичної взаємодії між іонами решітки, для структурного типу в’юрциту і сфалериту і рівні 1,641;1,638, яка є більшою для решітки в’юрциту [6]. Звідси можна зробити два висновки. По-перше, якщо сполуки А2В6 можуть кристалізуватися в двох модифікаціях, одна з яких метастабільна, то тоді характер зв’язку в гексагональній модифікації повинен бути більш іонним, чим у кубічній. Більший іонний характер структури в’юрциту експериментально доказаний вимірюванням ширини забороненої зони, яка для деяких сполук А2В6 виявилася дещо більшою, ніж ширина забороненої зони тих же сполук, які мають структуру сфалериту [7-9]. По-друге, в ряді сполук А2В6 з збільшенням долі іонності зв’язку (l) повинен спостерігатися перехід від стабільної структури сфалериту S до стабільної структури в’юрциту W (табл. 3).

Коли необхідно підкреслити зв’язок атомів в сполуках використовують для одного і того ж атома різні радіуси: ковалентні, іонні, тетраедричн і октаедричні ковалентні радіуси атомів в сполуках. Для атомів халькогенідного ряду цинку і кадмію вони приведені в таблиці 4.

Таблиця 4

Радіуси елементів в халькогенідах цинку і кадмію
Елементи, r, Å Zn Cd S Se Te Література

Атомний, ra

1,53 1,71 1,09 1,22 1,42

Ковалентний, rk

1,25 1,48 1,02 1,16 1,36

Іонний, ri

0,83 0,99 1,82 1,93 2,11

Тетраедричний, rt

1,31 1,48 1,04 1,14 1,32 [2]

Октаедричний, ro

1,20 1,38 1,35 1,45 1,64 [10]


Информация о работе «Кристалоквазіхімія дефектів. Фізико-хімічні властивості легованих кристалів телуриду кадмію»
Раздел: Физика
Количество знаков с пробелами: 29652
Количество таблиц: 6
Количество изображений: 18

0 комментариев


Наверх