1.2.5. Органические дисперсные наполнители

К органическим дисперсным наполнителям относятся:

Технический углерод (сажа). По методу получения сажа может быть печной, канальной, термической, ламповой и ацетиленовой.

Канальные (диффузионные) сажи получают при неполном сгорании природного газа или его смеси с маслом (например, антраценовым) в так называемых горелочных камерах, снабженных щелевыми горелками.

Печные сажи получают при неполном сжигании масла, природного газа или их смеси в факеле, создаваемом специальным устройством в реакторах (печах). Сажа в виде аэрозоля выносится из реактора продуктами сгорания и охлаждается водой.

Термические сажи получают в специальных генераторах при термическом разложении природного газа или ацетилена без доступа воздуха.

Сажа нетоксична, в значительной степени химически нейтральна, сохраняет свойства во времени, недорогая. Кроме углерода, сажа содержит водород (0,5-0,9 масс %), серу (0,1-0,8%), кислород (0,1-4,3 масс.%).

Сажу вводят в ПЭ, ПП, ПС, АБС пластика, гомо- и сополимеры винилового ряда, в полиэфирных стеклопластиках используют для регулирования продолжительности гелеобразования и окрашивания.[9]

Древесная мука. Представляет собой тонкоизмельченную и высушенную древесину, содержащую целлюлозу и лигнин.[3]

Она имеет волокнистую структуру. Изготавливается преимущественно из мягкой древесины (сосны, канадской пихты), но получают также из лиственных деревьев. Получают размолом опилок, щепы, стружки на жерновой мельнице. Используются частицы размером 150-350 мкм. Этот в дешевый наполнитель широко применяется для получения фенольных и мочевиноформальдегидных пресс-порошков общего назначения. Недостатки древесной муки (особенно из древесины лиственных пород) низкие тепло-, влаго-, хемостойкость.

При введении в связующие древесной муки уменьшаются усадка и стоимость, повышается модуль упругости и жесткость. Из наполненных полиолефинов и ПВХ изготавливают плитки, паркетные полы, оконные рамы.

За рубежом применяют муку из скорлупы орехов, введение которой повышает прочностные и электроизоляционные свойства.

Древесную муку можно сочетать с минеральными наполнителями.

Реологические свойства расплавов наполненных полимеров имеют большое значение при выборе условий их переработки в изделия [10]. Вязкость расплавов, температура текучести зависят от объемной доли наполнителя и формы его частиц.

Если содержание наполнителя превышает 30 объем.%, такие материалы перерабатываются в основном прямым и литьевым прессованием.

Введение в расплавы полимеров малых добавок (0,5-1% объем.) наполнителей различной природы приводит к заметному (до 10-40%) от вязкости не наполненного полимера снижению вязкости и лишь при дальнейшем увеличении содержания наполнителя вязкость начинает возрастать [9,11]. Возникновение минимума объясняется образованием дополнительного свободного объема в граничном слое полимера на частице наполнителя, исходя из представлений о модели строения граничного слоя полимера [12]. Согласно этой модели, граничный слой состоит из двух подслоев, различающихся плотностью упаковки. Причем более плотный полимер (толщиной от нескольких сотен ангстремов до нескольких микрометров) находится в непосредственной близости от границы раздела, а далее следует более рыхлый, довольно протяженный (до десятков мкм) полимерный слой. Толщина слоев может изменяться в зависимости от природы полимера и наполнителя и других факторов. Под действием сдвиговых напряжений течение в системе происходит преимущественно по разрыхленным слоям, имеющим больший свободный объем, что и приводит к снижению вязкости. При некотором содержании наполнителя весь полимер может перейти в граничный слой, а разрыхленные слои соседних частиц придут в соприкосновение. В этот момент вязкость расплава окажется минимальной.

Реологические свойства наполненных систем в значительной мере определяются структурообразованием в полимерной среде частиц наполнителя и их связыванием друг с другом через адсорбированные на поверхности частиц макромолекулы [13]. При больших напряжениях сдвига структура, образуемая частицами наполнителя, разрушается, и тогда энергия активации течения наполненной системы становится такой же, как и ненаполненной.[3]

Регулирование реологических свойств наполненных композиций может быть осуществлено путем изменения поверхностных свойств наполнителя, определяющих взаимодействие частиц как друг с другом, так и с полимером. При модификации частиц наполнителя могут также улучшаться смачиваемость и равномерность их распределения в полимерной матрице, что особенно существенно при высоких степенях наполнения.

Наполненные полимеры характеризуются более низкой текучестью, поэтому перерабатываются при температуре на 20-30 0С выше ненаполненных и более высоких значениях давления. Для снижения вязкости можно использовать смазки и пластификаторы. В качестве твердых смазок используют наполнители пластинчатой структуры: графит, диоксид молибдена, нитрид бора и диселениды металлов в количестве не более 3 масс.%.

Твердые частицы наполнителя снижают технологическую усадку, колебание усадки и повышают размерную точности изделий.[3]

При воздействии внешних сил полимерные материалы деформируются, а при значительных и длительных воздействиях разрушаются. Поэтому полимеры характеризуют деформационными и прочностными свойствами, Деформация - изменение структуры, объема и линейных размеров тела под давлением внешних сил. Прочность - это устойчивость твердого тела к действию внешних сил без изменения формы и разрушения, характеризующаяся пределом прочности, то есть величиной напряжения, при которой еще не происходит разрушение материала в условиях нагружения.

Долговечность – это продолжительность от момента приложения нагрузки до момента разрушения материала. Зависит от структуры материала, внутренних напряжений, а также от величины приложенных нагрузок и температуры испытания. Существенно влияют на долговечность технология переработки и последующей обработки изделий и условия эксплуатации.

При введении наполнителей изменяются многие свойства композиционных материалов.

важным параметром, поэтому необходимо точно знать деформации, отклонения или перемещения, происходящие в конструкции, и ее отдельных элементах под действием внешних сил. При действии нагрузок между элементами конструкций должны сохраняться точное соответствие и необходимые зазоры.

Для расчета модуля упругости дисперсно-наполненных полимеров принимают обобщенное уравнение Нилсена-Кернера:

 или

где   

Екм, Ем, Ен - модули упругости (сжатия, растяжения, изгиба) композиционного материала, матрицы и наполнителя;

VM- коэффициент пуансона матрицы;

н и max - объемная и максимальная объемная доли наполнителя соответственно.[3]

Относительное удлинение при разрыве, наполненного материала определяется конкретным механизмом его разрушения . Теория этого явления довольно сложна, однако при хорошей адгезии можно с достаточной точностью рассчитать удлинение при разрыве в зависимости от содержания твердого наполнителя:

где  и  - деформация наполненной и ненаполненной матрицы.

Прочность дисперсно-наполненных полимеров изменяется сложным образом, в зависимости от природы, содержания и размера частиц наполнителя, прочности сцепления наполнителя с матрицей и характера разрушения матрицы.

Разрушение твердого тела включает три стадии – инициирование трещины, ее медленный стабильный рост до критических размеров и, наконец, ее быстрое нестабильное распространение.

Если частицы наполнителя по размерам превосходят структурные дефекты матрицы (со), особенно, если частицы имеют нерегулярную форму, то они могут стать наиболее опасными дефектами наполненных композиций.

С одной стороны, частица наполнителя воспринимает на себя внешние напряжения, с другой - она является концентратором напряжений материале. Дисперсные частицы практически не приводят к увеличению прочности стеклообразного полимера, несколько увеличивая ее для полимеров, находящихся в высокоэластическом состоянии.[3]

Введение дисперсных наполнителей в термопласты с высокой энергией разрушения (103-104Дж/м2) практически всегда приводит к ее снижению. Дисперсные наполнители вводят в термопласты для снижения их стоимости, повышения жесткости, прочности при сжатии и улучшения технологичности при переработке. Введение наполнителей снижает также относительное удлинение при разрыве и ударную вязкость, практически не влияет на разрушение при растяжении.


2.Свойства оболочек сельскохозяйственного производства.

Сбор зерновых культур на территории РФ в период с 1996-2005 г. г. составил: просо – 7557 тыс.т При обмолоте данных крупяных продуктов существенную долю составляет лузга (отходы обмолота при производстве круп): 15,5% – для проса. Таким образом, ежегодно количество лузги проса составляет ~ 117 тыс. т. В этой связи предложено использование данных отходов в качестве наполнителей для полиэтилена. [14]

Использование таких наполнителей позволяет не только существенно снизить затраты на получение наполнителей, а, следовательно, и стоимость изделий, но и использовать экологически чистое сырье, что обеспечит возможность расширения областей применения изделий из ПКМ. Кроме того, такие наполнители, возможно, модифицировать, обеспечивая им комплекс заданных свойств, в том числе и пониженную горючесть.

В связи с отсутствием в литературе данных по свойствам отходов обмолота проса (ООП), а также для оценки их взаимодействия с другими компонентами композиций и влияния их на процессы пиролиза и горения ПКМ, исследовались свойства используемых наполнителей.

Химический состав наполнителей изучался с применением метода ИКС, устойчивость к воздействию температур и способность к коксобразованию – методом ТГА, гранулометрический состав – ситовым анализом, насыпная и истинная плотность - в соответствии с ГОСТом, форма частичек - методом световой микроскопии.

Так как на прочностные свойства наполненных композиций большое влияние оказывают физические свойства наполнителей: размер частиц наполнителя, их форма и распределение в материале, то проводили подготовку наполнителя, заключавшуюся в его температурной обработке и измельчении.

Частички лузги, по данным световой микроскопии, имеют лепесткообразную форму со средними размерами: длина ~ 2-4 мм, толщина ~0,1мм (рис.1)

В связи с тем, что данный наполнитель имеет небольшую толщину при достаточно больших размерах, он обладает высокой удельной поверхностью, что должно обеспечить хорошую смачиваемость наполнителя связующим.

По химическому составу они представляют собой в основном крахмал и клетчатку, включают 14-25% воды и незначительное количество минеральных веществ, что частично подтверждается данными ИКС (рис. 4).

Для наполнения использовались частички как без разрушения структуры и формы, так и предварительно измельченные в ножевой дробилке.

Измельченные ООП имеют гранулометрический состав представленный на рис и неправильную форму частиц.

Средний размер частиц составляет 2,5 мм и такому размеру соответствует ~60 % наполнителя.

Определена насыпная плотность измельченного наполнителя, составляющая 17,4 кг/м3. Отходы данных производств не растворяется в воде, в щелочах обугливается, в минеральных кислотах – не растворяется, отмечено незначительное изменение массы в ледяной уксусной кислоте и концентрированной муравьиной кислоте.

В связи с тем, что основным методом получения изделий из термопластов является литье под давлением, в процессе которого на материал воздействуют высокие температуры, оценено влияние температур на наполнители. ООП подвергались воздействию температуры 190, 250, 400°С в течение различного времени от 10 до 180 мин. Температурная обработка уже при 250°С в течение 90 мин. изменяет объем и внешний вид наполнителя. Частицы оболочек как бы усаживаются, становятся более хрупкими и значительно легче поддаются измельчению.

Изменения в химическом составе ООП после термовоздействия исследовались методами термогравиметрического анализа (ТГА) и инфракрасной спектроскопии (ИКС) (рис. 4,5).

Дегидратация исходных ООП происходит в интервале температур 20-150°С с потерями массы 3,5-8%, что подтверждается эндотермичностью данного процесса.

Деструкция исходных ООП начинается при 160°С потери массы по завершению основной стадии деструкции составляют 57,5%. Воздействие температур 200 и 250°С при продолжительности термообработки (от 10 до 180 мин) существенно не влияют на термостойкость образцов.

Исследования химического состава как исходных, так и термообработанных ООП методом ИКС показали наличие в спектрах ИКС глубокой полосы поглощения в области 3200–3500 см-1, свидетельствующей о наличии в оболочках проса, связанных водородными связями, ОН¯групп. Полосы поглощения при 2923 см-1 следует отнести к валентным колебаниям связей СН -СН3 группы, 2853 см-1 СН2 группы.

Обнаружены также валентные колебания кольца  при 1090 см-1, и мостика (–С–О–С– ) при 1060 и 898 см-1 .

Анализ спектров термообработанных при 250 и 400°С ООП показывает, что при воздействии температуры имеются различия в интенсивности и положении некоторых полос.

Так, у термообработанных, особенно при 400°С ООП уменьшается интенсивность полосы поглощения ОН групп, исчезают полосы, соответствующие поглощению – С–О–С– глюкозидной связи (1060 и 898 см-1) и увеличивается интенсивность колебаний СН2 групп (2853 см-1). Все эти изменения могут свидетельствовать о разрушении макромолекулы по глюкозидным связям.

ООП использовали в качестве наполнителей для полиэтилена.

Компоненты в композиции совмещались следующим образом: осуществлялась подготовка исходных компонентов; ПЭ смешивался ООП сухим методом, до равномерного распределения наполнителя в объеме ПЭ, полученная композиция обрабатывалась, используемой в качестве антиадгезива, полиэтиленсилоксановой жидкостью (ПЭС).

Исследовались композиции, содержащие до 10 масс. ч. ООП. Введение большего количества отходов затруднено вследствие достаточно больших размеров даже измельченных отходов и их низкой насыпной плотности.

Для выбора способа переработки, перерабатывающего оборудования и режимов переработки оценивалась текучесть композиций по показателю текучести расплава (ПТР). Определение проводилось в интервале температур 150-210°С и интервале нагрузок 2,6-10 Н. Показано, что с увеличением нагрузки при всех исследуемых температурах текучесть композиции увеличивается.

 
Аналогичное влияние на показатель текучести оказывает температура. С увеличением температуры при испытаниях со 150 до 210°С ПТР возрастает (рис. 17). На основании проведенных исследований для получения образцов методом экструзии выбраны оптимальные технологические параметры:

Т=170°C, Р=100МПа.

Согласно технологическим требованиям ПТР для литьевых марок составляет 2-20 г/10 мин., следовательно, исследуемые композиции можно перерабатывать литьем под давлением.

Введением наполнителей достигается существенное изменение физико-химических и механических свойств получаемых композиционных материалов.

ПЭ низкой плотности относится по своим прочностным свойствам к классу конструкционных материалов общетехнического назначения.

Образцы, содержащие отходы обмолота проса характеризуются комплексом свойств, близких к ненаполненному ПЭ. Отмечены уменьшение плотности, повышение устойчивости к изгибу и теплостойкости, повышение ползучеустойчивости.

Изменение физико-механических характеристик обусловлено изменением структуры наполненных полимеров. Меняется характер разрушения ПКМ на основе ПЭ. Ненаполненный ПЭ при приложении растягивающих нагрузок деформируется с образованием «шейки», то есть, способен к образованию и развитию вынужденно-эластической деформации.

Полиэтилен, наполненный как исходными, так и измельченными отходами, при растягивающих нагрузках теряет способность к возникновению и развитию вынужденно-эластической деформации, уменьшается относительное удлинение.

Образцы, содержащие лузгу меньших размеров обладают лучшей способностью к деформации, что связано с более равномерным распределением наполнителя.

Таким образом, в результате исследований была показана возможность применения отходов обмолота проса в качестве наполнителя ПЭ. Отмечено, что введение данных отходов позволяет перерабатывать композицию методом экструзии при сохранении физико-механических свойств и термостойкости ПЭ со снижением его стоимости. Возможно также получение биодеградируемых композитов.



Информация о работе «Производство и переработка масличного сырья»
Раздел: Химия
Количество знаков с пробелами: 74610
Количество таблиц: 5
Количество изображений: 0

Похожие работы

Скачать
49879
2
0

... — 4 мес, разлитого во фляги и бочки — 1,5 мес. По истечении гарантийных сроков хранения подсолнечное масло может быть реализовано, если его качество удовлетворяет требованиям стандарта.СРАВНИТЕЛЬНАЯ ОЦЕНКА КАЧЕСТВА РАСТИТЕЛЬНЫХ МАСЕЛ РАЗНЫХ ИЗГОТОВИТЕЛЕЙЦель работы.Исследовать пять образцов растительных масел разных изготовителей по нескольким показателям и определить соответствуют ли эти масла ...

Скачать
122453
10
0

... рекомендациями по планированию, учету и калькулированию себестоимости продукции в сельском хозяйстве». 3. СОСТОЯНИЕ И ПУТИ СОВЕРШЕНСТВОВАНИЯ УЧЕТА ЗАТРАТ И ИСЧИСЛЕНИЯ СЕБЕСТОИМОСТИ ПРОДУКЦИИ ПРОМЫШЛЕННЫХ ПРОИЗВОД СТВ.   3.1. Организация первичного и сводного учета затрат и выхода продукции промышленных производств. Система документации является обязательной в нашей стране. Это требование ...

Скачать
28864
1
0

... по числу снесенных яиц за год и их массе. Продуктивность пчелы Ее оценивают по количеству меда, полученной от одной пчелиной семьи. Основная продукция пчеловодства – мед, имеющий пищевые и лечебные свойства, а также воск и прополис. Технология производства мясо бройлеров   При производстве мяса птицы применяют три технологии выращивания и содержания – на глубокой подстилке, сетчатых ...

Скачать
140009
19
2

... цеха являются прямыми для цеха, но косвенными для множества видов продукции изготавливаемой в данном цехе. Затраты на производство продукции масложировой промышленности. Производства некоторых видов продукции требует нескольких этапов, прохождения нескольких процессов производства, и поэтому готовая продукция одного этапа производства является основным материалом (т.е. статьей затрат) для ...

0 комментариев


Наверх