1. ЭЛЕМЕНТЫ ПЕРВОЙ ГРУППЫ.
Щелочные металлы первой подгруппы имеют на внешней электронной оболочке по одному электрону и, следовательно, одновалентны.
Металлоорганические соединения построены так, что металл обычно связан поляризованной связью с атомом углерода органического остатка R—Me (где R — алкил или арил):
Названия металлоорганических соединений слагаются из названий радикалов и металла.
1.1 Органические соединения лития.
Способы получения. 1. Из галогеноалкилов (или арилов) и металлического лития (К. Циглер, 1928 г.). Способ заключается во взаимодействии лития с галогеноалкилами или арилами (обычно применяют хлористые алкилы и бромистые арилы). Успех реакции, помимо строения галогенопронзводного, зависит от растворителя и температуры. Растворителями при получении литийорганических соединений — алкильных — служат петролейный эфир, гексан, бензол; арильных — этиловый эфир:
Галогенвинилы (в которых галоген обладает малой подвижностью) легко реагируют с литием, образуя литийорганические соединения винильного типа:
Неустойчивость литийорганических соединений к влаге и к кислороду заставляет проводить синтез с сухими веществами в атмосфере инертных газов (азота). Литийорганические соединения обычно не выделяются в свободном виде, а применяются в растворах так же как натрий- и магнийорганические соединения.
Основному процессу могут сопутствовать побочные реакции, например взаимодействие исходного галогеноалкила с образовавшимся литийорганическим производным:
2. Действие лития и литийалкилов на органические соединения ртути имеет значение в случае необходимости выделения литийоранических соединений в свободном виде:
Химические свойства. Вода, спирты, кислоты легко реагируют с литийорганическими соединениями, например:
Окисление литийорганических соединений. При регулируемом окислении литийорганические соединения превращаются в спирты:
Синтез кислот. Введение литийорганических соединений в избыток двуокиси углерода (их выливают на твердую углекислоту) приводит к литиевым солям карбоновых кислот, которые при действии соляной кислоты превращаются в карбоновые кислоты. Эта реакция широко применяется при исследовании строения литийорганических соединений и для синтеза карбоновых кислот:
Взаимодействие с непредельными углеводородами — общее свойство для щелочных металлов первой группы. Первоначально считалось, что для успеха реакции двойная связь должна быть сопряжена с непредельной системой или ароматическим кольцом. Однако в 1960 г. К. Циглер показал возможность присоединения литийалкилов к изолированной двойной связи, причем третичные и вторичные литийалкилы реагируют легче первичных.
Бутиллитий при нагревании и повышенном давлении присоединяется к этилену с образованием литийалкилов (в которых литий сохраняет высокую реакционную способность):
Изопропиллитий реагирует с этиленом уже при -60°С, образуя 1-литий-З-метилбутан:
К 1,3-бутадиену литийалкилы присоединяются в положения 1,4 и 1,2. Повышение температуры и давления благоприятствует 1,4- присоединению:
.
Практическое значение этой реакции заключается в том, что она привела к промышленному методу стереорегулярной полимеризации 1,3-бутадиена в синтетический каучук.
Взаимодействие алкиллития с карбонильными соединениями (альдегидами, кетонами), как и в случае натрий-, магний-, цинк-, алюминийорганических соединений, приводит к спиртам. Использование в этой реакции литийорганических соединений оправдано в тех случаях, когда взаимодействие с альдегидами и кетонами более доступных магнийорганических соединений не приводит к цели.
Так, диизопропилкетон и изопропиллитий образуют триизопропилкарбинол. Реакция протекает через стадию нестойкого комплекса, который перегруппировывается в литиевый алкоголят, гидролизуемый водой в триизопропил карбинол:
Магнийорганическим синтезом подобный спирт разветвленного строения получить нельзя вследствие восстановления исходного кетона магнийорганическим соединением.
... соединение металлоорганический Вывод В работе были рассмотрены важнейшие способы получения алкилсиланов: · взаимодействие металлоорганических соединений с алкилхлорсиланами; · взаимодействие гидридов металлов с алкилхлорсиланами; · каталитическое диспропорционирование соединений, содержащих алкилгидридсилановый фрагмент; · гидрирование алкилхлорсиланов и тетраалкилсиланов. У ...
... (2,2,5,5-тетраметил-3-имидазолин-3-оксид-4-ил)фенилметанолу и 2,2,5,5-тетраметил-4-триэтилгермил-3-имидазолин-3-оксиду. Подобраны условия, позволяющие провести литиирование 5,5-диметилпирролин-1-оксида и последующую реакцию с электрофильными реагентами селективно по альдонитронной группе на фоне активной метиленовой группы. Реакция литиированного производного альдонитрона 1,2,2,5,5-пентаметил ...
... лабораторную практику принадлежит выдающемуся французскому химику В. Гриньяру. В 1900 г. он усовершенствовал метод синтеза, предложив разделить реакцию на две стадии: 1 - образование смешанного магнийорганического соединения в эфирной среде: RX + Mg → RMgX, где R - углеводородный радикал, а Х - галоген; 2 - взаимодействие RMgX с соединением, содержащим карбонильную группу, приводит к ...
... информационной плотности, что весьма важно для развития современных технических средств записи, накопления и хранения информации. 7. Важнейшие открытия в химии XXI века 2001 Уильям Ноулз, Риоджи Нойори и Барри Шарплесс «За исследования, используемые в фармацевтической промышленности - создание хиральных катализаторов окислительно-восстановительных реакций». 2002 Джон Фенн и Койчи Танака «За ...
0 комментариев