1.2. Смешанные фосфаты лития и переходных металлов

Двойные фосфаты, имеющие общую формулу LiMPO4 (где M = Mn, Fe, Co, Ni), изоструктурны оливину - силикату магния и железа (Mg,Fe)2SiO4.

Таблица 1

Параметры решетки и разрядные характеристики соединений LiMPO4 [6- 9]

M a, Å b, Å c, Å U, В Емкость, А*час/кг
Mn 10,45 6,11 4,75 4,1 140
Fe 10,31 6,00 4,69 4,3 148
Co 10,20 5,92 4,68 4,8 86
Ni 10,20 5,92 4,68

Фосфаты LiMPO4, где M = Mn, Co, Ni получены в ходе взаимодействия карбоната лития, оксида металла (MO или MnO2) и дигидрофосфата аммония - (NH4)2HPO4 при температуре 350 °C, которую затем повышали до 780 °C и выдерживали 18 часов на воздухе [6]. LiFePO4 получен аналогично, но в инертной атмосфере [10].

1.3. Смешанные фторидофосфаты щелочных и переходных металлов

 

Просмотр реферативных журналов, баз данных PDF-2 и ICSD обнаружил только три фазы формульного типа A+2MPO4F, из них с литием только одна: Li2NiPO4F [11]. Известны также Na2MnPO4F [12], Na2MgPO4F [13], Na4,6FeP2O8,6F0,4 [14, 15, 16, 17].

Структура Li2NiPO4F (рис. 1) определена рентгенографически на монокристалле [11]. Она относится к ромбической сингонии (пространственная группа Pnma, параметры a = 10.473(3) Å, b = 6.2887(8) Å, c = 10.846(1) Å, Z=8). В структуре можно выделить рутиловые цепи из октаэдров NiO4F2, соединенных ребрами, вытянутые вдоль оси y. Эти цепи соединены в двух остальных измерениях тетраэдрами PO4. В пустотах каркаса размещаются катионы лития. Половина их находится в уплощенных тетраэдрах из четырех атомов кислорода, четверть – в квадратных пирамидах из 4 O + 1 F и еще одна четверть в сильно асимметричной координации, где трудно сделать однозначный выбор между КЧ 4,5,6. Достаточно короткие (до 3,21 Å) расстояния Li-Li соединяют все позиции лития в двумерную сеть в плоскости y0z (рис. 2). Это позволяет ожидать достаточно высокую подвижность ионов лития в каркасе и возможность их извлечения с окислением никеля и сохранением исходного каркаса:

Li2Ni2+PO4F  ® LiNi3+PO4F + Li+ + e ® Ni4+PO4F + 2 Li+ + 2 e

Но сведений о таких свойствах Li2NiPO4F в литературе не обнаружено. Можно было бы ожидать существование аналогичных фаз, содержащих на месте никеля другие катионы близкого размера с переменной степенью окисления (табл. 2), но никаких сведений о них в литературе также не обнаружено.

Таблица 2

Эффективные кристаллохимические радиусы [18] некоторых двухзарядных катионов в октаэдрической координации в высокоспиновом состоянии

M

Mn2+

Fe2+

Co2+

Ni2+

VIR, Å

0,97 0,92 0,885 0,83

В данной работе поставлена задача получения новых фаз состава Li2MPO4F, где M = Mn, Fe, Co, и исследования возможности окислительного извлечения лития из них и из ранее известного никелевого соединения. Предполагалось, что за счет удвоенного содержания лития можно будет повысить емкость электродного материала по сравнению с фазами типа оливина (табл. 3).

Таблица 3

Теоретические удельные емкости некоторых известных и предполагаемых материалов положительного электрода литий-ионного аккумулятора

Восстановленная форма Окисленная форма Емкость, А*час/кг

LiMO2 (M = Co, Ni)

Li0.5MO2

140

LiMPO4 (M = Mn, Fe, Co, Ni)

MPO4

170

Li2MPO4F (M = Mn, Fe, Co, Ni)

LiMPO4F

144

MPO4F

288


Рисунок 1

Полиэдрическое изображение кристаллической структуры Li2NiPO4F [10]

Зеленым цветом показаны октаэдры вокруг катионов никеля, желтым – тетраэдры PO4, красным – ионы фтора (в остальных вершинах – кислород), светлыми кружками показаны ионы лития.

 


Рисунок 2

Система позиций лития в структуре Li2NiPO4F. Соединены позиции, отстоящие друг от друга не более чем на 3,21 Å.

 


Информация о работе «Поиск новых фторидофосфатов лития и переходных металлов»
Раздел: Химия
Количество знаков с пробелами: 32530
Количество таблиц: 6
Количество изображений: 2

0 комментариев


Наверх