3. Результаты и их обсуждение

 

3.1. Фторидофосфат никеля-лития

 

Синтез проводился в две стадии, как описано выше. Если исходным веществом был ацетат никеля, то при его разложении происходило частичное восстановление никеля (образец чернел), поэтому требовался обжиг в окислительной атмосфере. Если же исходное вещество - оксид никеля, то и первый, и второй обжиги можно проводить и на воздухе, и в азоте, результаты практически одинаковые. На первой стадии при температуре последнего обжига 750°С получен почти чистый желтый LiNiPO4 с небольшой примесью NiO, а после 680°С содержание примесей было несколько больше, и образец был серого цвета. Но в обоих случаях на второй стадии - при обжиге с LiF (750 °С, 2-4 часа) - получен практически чистый Li2NiPO4F серо-зеленого цвета. В имеющейся базе порошковых дифракционных данных нет его рентгенограммы, но она была рассчитана на основе структурных данных [11] с помощью программы Lazy Pulverix, и экспериментальные данные хорошо совпали с расчетными.

 

3.2 Фторидофосфат кобальта-лития

 В согласии с литературными данными [6], LiCoPO4 удалось получить на воздухе. На первой стадии смесь исходных соединений поместили в сушильный шкаф при температуре 170 °C, выдержали 2 часа, затем переместили в муфельную печь, и медленно нагрели до 680 °C, выдержав 40 минут, после чего тщательно растерли и выдержали при 750°C 30 минут. Получен порошок фиолетового цвета, по данным рентгенофазового анализа соответствующий фосфату кобальта-лития.

Однако на второй стадии, после его реакции с LiF при 750°С, вместо ожидаемого Li2CoPO4F обнаружено большое количество Co3O4 в смеси с исходным LiCoPO4 и неизвестными фазами. Поскольку без фторида лития этого оксида кобальта не наблюдалось, можно предположить, что к его образованию привело сочетание сразу нескольких побочных явлений: гидролиз фторида водяным паром увеличил содержание Li2O, поэтому менее основный CoO был вытеснен из фосфата, чему способствовало его окисление до Co3O4. Поэтому присутствие кислорода воздуха и водяных паров мешает при твердофазном синтезе фторидофосфата кобальта.

После этого весь эксперимент последовательно проведен в инертной атмосфере. Для чего на первой стадии снова приготовили смесь веществ, спрессовав, поместили в трубчатую печь выдержали в интервале температур от 120 до 300 °C около часа, затем стали повышать температуру на 50°C каждые 10-15 минут, доведя до 750 °C, выдержали 1,5 часа. Преимуществом был тот факт, что реакция проходила при постоянном токе азота, после охладили систему в азоте, извлекли таблетку и растерли ее, порошок фиолетового цвета. Образец, взятый на рентгенофазовый анализ, показал наличие фосфата кобальта-лития и незначительного количества примесей по сравнению с тем порошком, который был получен в воздухе. Затем добавили расчетное количество LiF и, спрессовав таблетку, поместили в трубчатую печь, нагрели в токе азота до 750 °C, выдержали 2 часа , затем охладили систему в присутствии азота, таблетку извлекли и растерли, полученный темно-фиолетовый порошок проверили с помощью рентгенофазового анализа.

На рентгенограмме отсутствовали пики исходных LiCoPO4, LiF, оксидов кобальта. По расположению и интенсивности пиков рентгенограмма этого продукта оказалась сходна с расчетной рентгенограммой Li2NiPO4F, что позволило полностью проиндицировать ее на основе аналогичной ромбической элементарной ячейки (табл. 4). Впрочем, попытка механического переноса индексов hkl с одной рентгенограммы на другую первоначально не привела к удовлетворительному результату. Лишь после нескольких проб и ошибок выяснилось, что замещение никеля кобальтом ведет к анизотропному изменению параметров (a уменьшается, b, c и объем возрастают, см. табл. 5), поэтому некоторые линии на рентгенограмме меняются местами.

Правильность индицирования подтверждается хорошим согласием вычисленных и измеренных значений углов (табл. 4). Найденный объем ячейки, несколько больший, чем у никелевого аналога (табл. 5), хорошо согласуется с соотношением размеров ионов никеля и кобальта (табл. 2). Таким образом, синтезировано новое соединение Li2CoPO4F, изоструктурное Li2NiPO4F.


Таблица 4

Результаты индицирования рентгенограммы нового соединения Li2CoPO4F в сравнении с рентгенограммой Li2NiPO4F, рассчитанной на основе его кристаллической структуры с помощью программы Lazy Pulverix. Параметры решетки уточнены с помощью программы Celref 3 и приведены в таблице 5.

hkl

Li2NiPO4F

Li2CoPO4F

I

2qвыч

Iэкс

2qэкс

2qвыч

D (2q)
002 86 16.34 60 16.33 16.32 0.01
200 100 16.93 85 17.03 16.98 0.05
211 40 23.58 50 23.50 23.51 - 0.01
013 32 28.48 25 28.40 28.35 0.05
311 14 30.42 20 30.44 30.42 0.02
022 45 32.93 40 32.59 32.59 0.00
004 36 33.03 40 32.97 32.98 - 0.01
400 47 34.25 100 34.31 34.36 - 0.05
222 45 37.25 50 36.98 36.98 0.00
410 7 37.20 10 37.25 37.23 0.02
402 5 38.17 20 38.25 38.26 - 0.01
123 16 38.92 10 38.62 38.62 0.00
214 11 40.10 25 40.00 40.01 - 0.01
224 16 47.56 30 47.29 47.31 - 0.02
422 32 48.24 20 48.08 48.08 0.00
424 15 56.99 25 56.82 56.83 - 0.01
026 28 58.93 10 58.65 58.65 0.00

Таблица 5

Сравнение параметров ромбических решеток Li2MPO4F (в скобках – стандартное отклонение последней значащей цифры)

M a Å b Å c Å V
Ni 10.473(3) 6.2887(8) 10.846(1) 714.3
Co 10.440(5) 6.368(9) 10.863(8) 722.3(8)

 


Информация о работе «Поиск новых фторидофосфатов лития и переходных металлов»
Раздел: Химия
Количество знаков с пробелами: 32530
Количество таблиц: 6
Количество изображений: 2

0 комментариев


Наверх