4.1. Термодинамический подход к изучению и регулированию взаимодействия полимеров с наполнителями
Введение различных наполнителей в резины и пластмассы является перспективной возможностью экономии основного полимерного компонента и одновременно улучшением некоторых эксплуатационных характеристик материала. Эффективность влияния наполнителей на свойства полимеров во многом определяется адгезионным взаимодействием компонентов друг с другом, величина которого зависит от числа и энергии возникающих связей [2,9, 10, 11].
Об адгезионном взаимодействии часто судят по величине адгезионной прочности (А0), характеризующей силу или работу разрушения адгезионного контакта и зависящей, в свою очередь, от условий формирования материала, формы и размера образцов, условий испытаний [21].
Существует другой подход к изучению взаимодействия различных поверхностей друг с другом – термодинамический.
Термодинамическая оценка величины адгезионного взаимодействия [9], т.е. определение работы или энергии адгезии (Wa), является наиболее строгой и объективной характеристикой, не зависящей от механизма и условий ее осуществления.
Присутствие пластификатора в полимерной композиции вносит дополнительный энергетический вклад вследствии взаимодействия наполнителя и полимера с пластификатором и обуславливает конкуренцию во взаимодействиях полимер-наполнитель. Полимер-пластификатор и пластификатор-наполнитель. Определяющим фактором при этом являются взаимодействие пластификатора с наполнителем, т.е. величины теплот смачивания [12,19]. Хорошо смачиваемая поверхность аэросила, пластификатор играет роль модификатора, способствующего увеличению сродства поверхности наполнителя к полимеру, что приводит к их хорошему энергетическому взаимодействию друг с другом в более широкой области степеней наполнения, чем в непластифицированных образцах [12]. Плохое взаимодействие наполнителя с пластификатором (малые значения теплот смачивания) либо не изменяет ситуацию, либо взаимодействие полимера с наполнителем ухудшается вплоть до изменения знака DН [13]. При близких значениях теплот смачивания наполнителя различными пластификаторами решающую роль играет термодинамическое сродство пластификатора к полимеру [13]. Таким образом, варьируя термодинамическое сродство пластификатора к полимеру и теплоту смачивания им наполнителя, можно в нужных направлениях регулировать энергетическое взаимодействие полимеров с наполнителями.
С возрастанием удельной поверхности наполнителей [12,14] адгезионное взаимодействие, как правило, усиливается, поскольку в присутствии высокомолекулярных наполнителей возрастает объем полимера, иммобилизованного в граничные слои, по сравнению с низкодисперсными наполнителями. Это проявляется в повышении температуры стеклования (Тс) образцов. Содержащих наполнители с высокой удельной поверхности .
Таким образом, получение наполненных полимерных материалов с удовлетворительными механическими характеристиками возможно при достижении оптимальных величин адгезионного взаимодействия полимера с наполнителями, конкретных для каждой системы, обеспечивающих лабильность связей, т.е. возможность релаксации перенапряжений на межфазной границе с одновременным сохранением эффективных связей полимера с поверхностью наполнителя при деформации композиций.
II. Экспериментальная часть
2.1. Объекты исследования
2.1.1. Полиамид П-548
Полиамид П-548 представляет собой спирторастворимый сополимер, полученный поликонденсацией соли АГ и e-капролактама или соли АГ, соли СГ и e-капролактама.
Выпускается в виде гранул цилиндрической или пластинчатой формы от белого до светло-желтого цвета. Сополимер растворим в спиртах и спиртоводных растворах. Используется для изготовления полиамидных клеев, лаков, пленок, покрытий, прокладочных материалов в авиационной, пищевой, кабельной, химической, нефтяной и других отраслях промышленности.
Показатели:
1) температура плавления 0С, не менее 150
2) число вязкости мл/г, не менее 136
3) разрушающее напряжение при растяжении, кгс/см2 не менее 300
4) относительное удлинение при разрыве, % не менее 250
5) плотность, г/см3 1,12
6) модуль упругости при растяжении,кгс/см2 3400
7) твердость, кгс/см2 при нагрузке 36,5 кг 380-420
8) изгибающее напряжение, кгс/см2 180-190
2.1.2. Полибутилентерефталат (ПБТ) по ТУ 6-06-21-89
ПБТ представляет собой продукт, полученный по двухстадийному процессу. На первой стадии синтезируют ди (b-оксибутил)терефталат, на второй – осуществляют поликонденсацию. ПБТ обладает высокой прочностью, твердостью и антифрикционными свойствами.
Небольшое водопоглощение обуславливает высокую стабильность свойств и размеров изделий. Детали из этого материала могут работать при температурах от –60 до +1200С.
ПБТ устойчив к действию разбавленных кислот, минеральных солей, органических растворителей и при комнатной температуре к растворам щелочей и аммиака. Применяется для изготовления деталей конструкционного назначения, в радио- и электротехнике, пищевой, автомобильной промышленности и других отраслях.
Показатели:
1) плотность, г/см3 1,310
2) показатели текучести расплава, г/10 мин при 2500С 3- 6
3) температура плавления, 0С 224-230
4)прочность при разрыве, МПа 46-60
5)модуль упругости при растяжении, МПа 25000-28000
6)ударная вязкость по Шарни на образцах без надреза, кДж/м2 не разрушается
7)изгибающее напряжение при разрушении, МПа 75-80
2.1.3. Полиэтилен высокого давления 15803-020
Это твердый продукт, для которого характерны разнозвенность, большая эластичность, меньшая хрупкость, более низкая температура размягчения (108-1200С).
ПЭ при комнатной температуре нерастворим ни в одном из известных растворителей и только при 800С и выше, он заметно начинает растворяться в четыреххлористом углероде, бензоле, толуоле и т.д.
Формула ПЭ [-CH2-CH2-]n
Показатели:
1) плотность, г/см3 0,92
2) молекулярная масса 18 000-35 000
3) степень кристалличности, % до 70
4) температура расплава, оС 180 - 210
5) показатели текучести расплава, г/10 мин 2,0
6) разрушающее напряжение при растяжении, МПа 11,3
7) предел текучести при растяжении, МПа 9,3
8) относительное удлинение при разрыве, % 600
9) теплостойкость по Вика, оС 105
10) модуль упругости при растяжении,МПа 98,0
В качестве образцов для испытаний использовались стеклоткань и различного вида бумага, которая различается по сопротивлениям (30, 70, 140, 270 Ом).
Для модификации были использованы поверхностно-активные вещества:
1) алкилбутил-аммоний хлорид при п = 12;
2) оксиалкиловый спирт (смесь окиси этилена и окиси пропилена);
3) четвертичная соль аммопроизводная.
2.2. Экспериментальные методики.
2.2.1. Технология получения смесей.
Для получения смесей смешивали в нужных количествах ПА и ПБТ в лабораторном одношнековом экструдере при Т=2350С.
Образцы для исследований готовили в соответствии со стандартными методиками прессованием при Т=1800С и давлении 50 МПа.
... п.) является адсорбция молекул полимера поверхностью. В зависимости от характера адсорбции и формы цепей в расплаве или растворе свойства поверхностных слоев будут различными. Исследование релаксационных процессов в полимерах, находящихся на границе раздела с твердыми телами, представляет теоретический и практический интерес в связи с проблемой создания конструкционных наполненных полимерных ...
... химических связей, соединяющих основные звенья углеродной цепи, под действием акрилонитрильных группы – СН2—СН- и I CN атомов фтора приводит к повышению термической устойчивости полимеров. Так, в сополимере стирола и акрилонитрила под действием акрилонитрильной группы прочность связи С-С в основной цепи повышается с ...
войства образующихся веществ необходимо для успешной борьбы с ними. Классификация полимеров Классификация полимеров по составу основной цепи макромолекул (наиболее распространенная): I. Карбоцепные ВМС – основные полимерные цепи построены только из углеродных атомов II. Гетероцепные ВМС – основные полимерные цепи, помимо атомов углерода, содержат гетероатомы (кислород, азот, фосфор, серу и т.д.) ...
... (9, 10 класс). Таким образом, можно сделать вывод о том, что разработка элективного курса по данной теме является актуальной. ГЛАВА II. РАЗРАБОТКА ШКОЛЬНОГО ЭЛЕКТИВНОГО КУРСА «ПОЛИМЕРЫ ВОКРУГ НАС» II. 1. Программа курса профильной ориентации для учащихся 9 класса в рамках предпрофильной подготовки по курсу «Полимеры вокруг нас» Пояснительная записка Программа элективного курса «Полимеры ...
0 комментариев