2.4. Метод определения удельной адсорбции энтеросорбента по иону железа (III).

Адсорбционную емкость энтеросорбентов относительно ионов Fe определяли по количеству сорбированных ионов металла из стандартных растворов хлорида железа.

Для количественного определения ионов железа в растворе проводили титрование. Для этого отбирали пипеткой 5 мл раствора хлорида железа и переносили в колбу для титрования емкостью 100 мл. Осторожно нейтрализовали раствор, прибавляя по каплям при энергичном перемешивании 25%-ный раствор аммиака до появления слабой мути, которую растворяли в 1-2 каплях 6 М соляной кислоты. Затем прибавляли к раствору 2 мл 4 М раствора соляной кислоты , растворяли дистиллированной водой до объема 25 мл, нагревали, добавили 2 капли раствора сульфосалициловой кислоты и титровали раствором ЭДТА до перехода красно-фиолетовой окраски сульфосалицилата железа в светло-желтую ( или бесцветную) характерную для комплексоната железа.

Удельную адсорбцию рассчитывали по формуле:

, где

где Снач и Сравн- исходная и равновесные концетрации иона железа, моль/л;

V- обьем раствора хлорида железа, см3;

m- масса навески энтеросорбента, г.

2.5. Метод определения удельной адсорбции энтеросорбента по иону магния (II).

Адсорбционную емкость энтеросорбентов относительно ионов Mg определяли по количеству сорбированных ионов металла из стандартных растворов сульфата магния.

Для количественного определения ионов магния в растворе проводили титрование . Для этого отбирали пипеткой 5 мл раствора сульфата магния, переносили в колбу для титрования емкостью 100 мл, прибавляли 2 мл аммиачного буферного раствора и равное количество дистиллированной воды. Прибавляли на кончике шпателя 20-30 мг эриохромого черного Т, перемешивали до полного растворения индикатора. Титровали полученный раствор раствором ЭДТА до изменения окраски раствора из винно-красной в синюю.

Рассчитывали удельную адсорбцию по формуле:

, где

где Снач и Сравн- исходная и равновесная концентрации иона магния, моль/л;

V- объем раствора сульфата магния, см3;

m- масса навески энтеросорбента, г.

Экспериментальная часть

3.1. Синтез энтеросорбентов

 

На начальном этапе целью исследования явилось получение сорбционных материалов и использование их в качестве энтеросорбентов в медицинских целях.

Получение энтеросорбентов предполагает правильный выбор носителя для иммобилизации. При этом важно учитывать наличие таких положительных свойств твердых матриц как: развитая удельная поверхность, термостабильность, механическая устойчивость, малое изменение объема гранул при изменении рН или ионной силы, наличие функциональных групп, пригодных для селективной химической модификации и устойчивость к воздействию микроорганизмов.

В настоящее время предлагается огромный выбор биокатализаторов, которые могут быть использованы в биотехнологии и медицине в качестве энтеросорбентов, а также для селективного извлечения катионов и анионов из водных (или жидких) сред [13].

На данном этапе исследований перед нами стояла задача получения базового полифункционального сорбента, обладающего высокой сорбционной емкостью и специфичностью, который удовлетворял бы всем вышеперечисленным требованиям, предъявляемым к сорбционным материалам.

Поставленная задача решается способом, включающим гетерогенизацию поверхности микрокристаллической целлюлозы (МКЦ) природным высокомолекулярным соединением казеином.

Технология получения казеина представлена в виде схемы на рисунке 1.


Рисунок 1 – Схема получения казеина из сухого молока

Выбор микрокристаллической целлюлозы (МКЦ) в качестве носителя обусловлен, прежде всего, ее доступностью и наличием реакционно-способных групп, легко вступающих в химические реакции, а также тем, что она естественным образом улучшает самоочищение кишечника. Обладая тонизирующим действием на ткани кишечника, усиливает перистальтику и помогает избавиться от контаменантов и слизи, тем самым, улучшая усвоение питательных веществ и воды.

Высокоразвитая поверхность МКЦ, активные концевые группы, образующиеся при гидролитическом расщеплении глюкозидных связей высокополимерной целлюлозы, наличие силанольных групп ≡Si-OH на поверхности аэросила, являются определяющим фактором в процессе модификации поверхности носителя белковыми лигандами.

Использование казеина для активации поверхности носителя обусловлено рядом положительных свойств белкового комплекса: присутствие фосфора в виде фосфосериновых групп, которые определяют анионный характер казеина в нейтральной среде, высокое содержание некоторых аминокислот (глутаминовая кислота, лейцин, пролин) и неполярных остатков отвечает за нерастворимость казеина в воде на уровне изоэлектрической точки (рН 4,6) [1]. Кроме того, первичная структура пептидной цепи отличается присутствием двух контрастных зон: концевая последовательность –NH2 имеет в целом основной и гидрофобный характер; концевая последовательность –СООН является кислой и гидрофильной; и обусловливает ряд важных физико-химических свойств казеинов [7], одно из которых состоит в высокой адсорбционной способности.

Согласно физико-химическим свойствам, казеин является кислотным белком, поэтому хорошо растворяется в растворах щелочей с образованием казеинатов. При концентрации гидроксида натрия ниже 5 % невозможно достичь полного растворения казеина, выше 15 % - может наступить необратимая денатурация белка.

Концентрация казеина для модификации поверхности аэросила выбирается с учетом стерического фактора. Менее 1 мас.% казеина использовать нецелесообразно, т.к. остаются не задействованы в процессе модификации все функциональные группы аэросила. Использование более 15 мас.% казеина недопустимо в связи с конкуренцией молекул казеина за право обладанием центрами связывания, находящихся на поверхности кремнезема.

Проведен синтез энтеросорбентов на основе микрокристаллической целлюлозы и казеина.

Технология получения энтеросорбента включает в себя 6 стадий и представлена на рисунке 2.

Жесткой матрицы для иммобилизации казеина служила МКЦ - неионогенный гидрофильный полисахарид. Модификацию поверхности МКЦ казеином проводили в соответствии с методикой изложенной в работе [14].

Стадия 1 характеризует процесс получения казеина из сухого молока.

Стадия 2 включает растворение навески казеина в растворителе. На этой стадии в раствор казеина вводится неорганический газообразователь гидрокарбонат аммония в количестве не более 1-3% по массе. Введение гидрокарбоната аммония позволит исключить загрязнение сорбента контаменантами.


Рисунок 2 - Схема получение сорбента на основе микрокристаллической целлюлозы

Стадия 3 включает суспензирование навески МКЦ и раствора казеина с неорганическим газообразователем.

Стадии 4,5 отражают сушку сорбента под вакуумом при t=500 С до испарения растворителя.

Стадия 6 включает стабилизацию сорбента подкисленным раствором ацетона.


Информация о работе «Получение сорбционных материалов с биогенными элементами»
Раздел: Химия
Количество знаков с пробелами: 40865
Количество таблиц: 3
Количество изображений: 7

Похожие работы

Скачать
160060
33
31

... Листов Пров. 1 2 Консульт. БГТУ 7140607 2004 Н. контр. Утв. Целью данной дипломной работы является изучение сорбционных свойств мха по отношению к микроорганизмам и тяжелым металлам, а также изучение сорбционной способности системы «мох-микроорганизмы» и выявление доли участия каждого компонента этой ...

Скачать
40174
0
0

... присутствием на Солнце нового элемента. В 1895 году англичанин У. Рамзай выделил из природной радиоактивной руды клевеита газ, в спектре которого присутствовала та же D3-линия. Новому элементу Локьер дал имя, отражающее историю его открытия (греч. Helios—солнце). Поскольку Локьер полагал, что обнаруженный элемент- металл, он использовал в латинском названии элемента окончание «lim» , которое ...

Скачать
34766
0
0

... и других более дешевых видов очистки от грубодисперсных, коллоидных и части растворенных примесей. Обычная оптимальная последовательность процессов физико-химической очистки: коагуляция - отстаивание (флотация) - фильтрование - сорбция. Так, например, обессоливание природных и сточных вод целесообразно проводить на ионитах в случае исходного солесодержания до 1 г/л. Если регенерационные растворы ...

Скачать
77807
1
0

... (металлизация биосферы). Появление новых трансурановых химических элементов, развитие ядерной техники и энергетики. Выход за пределы планеты, развитие космонавтики. 8. С/х ЭС в условиях техногенеза. Агроэкосистема (АЭС) – совокупность биогенных и абиогенных компонентов участков суши преобразованных человеком, используемых для производства сельхозпродукции. Основа АЭС – почва, с/х угодия. ...

0 комментариев


Наверх