3. РАСЧЕТНО-ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ.

 

3.1. Критерий оптимизации.

В качестве критерия оптимизации при подборе оптимальной совокупности рабочих параметров процесса мы использовали энергетические затраты в кубе колонны (Qкип). При этом Qкип рассчитывались исходя из уравнения общего теплового баланса сложной колонны с боковой секцией, которое имеет вид следующий вид:

QF + QЭА + Qкип = QD1 + QD2 + QW + Qконд1 + Qконд2, (3.1)

где QF = F*CF*TF – количество тепла, поступающее с потоком исходной смеси;

QЭА = РЭАЭАЭА – количество тепла, поступающее в колонну с потоком экстрактивного агента;

QD1 = D1*CD1*TD1 – количество тепла, отводимое с потоком дистиллята основной колонны;

QD2 = D2*CD2*TD2 – количество тепла, отводимое с потоком дистиллята боковой секции;

QW = W*CW*TW – количество тепла, отводимое с кубовым потоком основной колонны;

Qконд1 = D1(R+1)r1 – количество тепла, отводимое при конденсации пара для создания потоков дистиллята и флегмы в основной колонне;

Qконд2 = D2(R+1)r2 – количество тепла, отводимое при конденсации пара для получения потоков дистиллята и флегмы в боковой секции.

Откуда затраты тепла в кипятильнике:

Qкип = QD1 + QD2 + QW + Qконд1 + Qконд2 – QF – QЭА (3.2)

или в развернутом виде:

Qкип = D1CD1TD1 + D2CD2TD2 + WCWTW + D1(R1+1)r1 + D2(R2+1)r2

– FCFTF – PЭАСЭАТЭА. (3.3)

Потоки D1, D2 и W при заданном качестве продуктов определяются из общего материального баланса и зависят от количества и состава питания, а также от соотношения F:ЭА. Следовательно, теплосодержание верхнего и нижнего продуктов основной колонны и дистиллята боковой секции также зависят от этих величин.

Энергозатраты на проведение процесса будут определяться температурой и расходом экстрактивного агента, подаваемого в колонну, флегмовыми числами в основной колонне (R1) и в боковой секции (R2). Величины R1 и R2 зависят от профиля концентраций в колонне, на формирование которого в данном случае оказывает влияние не только положение тарелок подачи исходной смеси и ЭА, его температура и расход, но и положение тарелки отбора парового потока в боковую секцию и его количество.

3.2. Описание технологической схемы процесса.

Технологическая схема состоит из одной сложной колонны с боковой укрепляющей секцией (рис.3.1).

Рис.3.1. Экстрактивная ректификация смеси ацетон-хлороформ в одной сложной колонне с боковой укрепляющей секцией.


В верхнюю часть сложной колонны подается ЭА, а в среднюю часть - исходная смесь ацетон–хлороформ. В качестве дистиллята основной колонны отбирается практически чистый ацетон. Ниже тарелки питания происходит отбор парового потока в боковую секцию. Поток жидкости из нижней части боковой секции возвращается в колонну на ту же тарелку. В дистилляте боковой секции выделяется хлороформ. ДМФА извлекается в кубе основной колонны и возвращается рециклом в ее верхнее сечение. Для восполнения потерь ЭА предусмотрена подача некоторого свежего количества ДМФА.

 

3.3. Моделирование фазового равновесия в системе ацетон – хлороформ – ДМФА.

Для расчета оптимальных рабочих параметров процесса необходимо иметь данные о фазовом равновесии в исследуемой системе. Физико – химические свойства чистых веществ приведены в таблице 3.1.

Таблица 3.1.

Физико – химические свойства компонентов.

Компонент Структурная Молекулярная Ткип, Тпл,
формула масса °C  °C 
Ацетон

CH3COCH3

58,08 56,1 -94,6
Хлороформ

CHCl3

119,38 61,1 -63,5
ДМФА

HCON(CH3)2

73,09 153,0 -61,0

В смеси ацетон – хлороформ имеется азеотроп с максимумом температуры кипения (Тазкип=63,93ºC, содержание ацетона 22% мас.) [21]. Равновесие жидкость-пар в системе ацетон-ДМФА экспериментально исследовано в работе [22]. Для моделирования фазового равновесия использовали уравнение NRTL, параметры которого приведены в [23].



Информация о работе «Определение оптимальных рабочих параметров процесса экстрактивной ректификации смеси ацетон-хлороформ в сложной колонне с боковой секцией»
Раздел: Химия
Количество знаков с пробелами: 68030
Количество таблиц: 11
Количество изображений: 11

Похожие работы

Скачать
63567
4
11

... С целью увеличения выхода и упрощения технологии процесса за счет исключения стадии щелочной промывки из процесса осушки 1,3-диоксолана и повышения экологической чистоты технологии разделения азеотропной смеси 1,3-диоксолан-вода, проводят экстрактивную ректификацию с использованием в качестве экстрагента этиленгликоль. Предлагаемое изобретение может быть использовано для получения 1,3-диоксолана, ...

0 комментариев


Наверх