Полярные диаграммы и энергетические уровни волновых функций жесткого ротатора.
Энергетические уровни жесткого ротатора и его спектрПоскольку квадрат момента импульса в жестком ротаторе однозначно связан с энергией (4.47), формула (4.101) позволяет легко рассчитать его уровни и спектральные термы (Т), т.е. уровни, выраженные в единицах измерения волнового числа (см–1 ) , являющегося характеристикой излучения
(4.105)
. (4.105)
(4.107)
Величина В, определяемая (4.107), называется вращательной постоянной ротатора.
4.3.7.2. Обозначим величину и составим таблицу 4.5 возможных значений энергии жесткого ротатора, а на рис. 4.5. представим его энергетическую диаграмму.
4.3.7.3. Подобно плоскому ротатору, энергетическая диаграмма жесткого ротатора демонстрирует расходящуюся систему уровней, однако значительно возрастает кратность вырождения. Расстояния между соседними уровнями увеличиваются с ростом квантового числа l, причем они линейно связаны с квантовым числом нижнего уровня l:
. (4.108)
Таблица 4.5.
Уровни жесткого ротатора
l | Символ уровня | Энергия Е, | Вырождение g=2l+1 |
0 | S | 0 | 1 |
1 | P | 2 | 3 |
2 | D | 6 | 5 |
3 | F | 12 | 7 |
4 | G | 20 | 9 |
Рис. 4.5. Энергетическая диаграмма жесткого ротатора.
Для жесткого ротатора, например, двухатомной молекулы, разрешены спектральные переходы между соседними уровнями . Поэтому, согласно уравнению 4.108, ее спектр представляет собой набор линий, отстоящих друг от друга на примерно одинаковую величину, равную в энергетической шкале, или 2В в шкале волновых чисел .
Поскольку вращательная постоянная связана с моментом инерции, изучение вращательных спектров молекул даёт возможность экспериментального определения момента инерции молекул и, следовательно, межатомных расстояний.
4.3.3. Волновые функции жёсткого ротатора
4.3.8.1. Использование операторов сдвигов состояний позволяет также максимально просто найти собственные функций операторов и без каких-либо специальных сведений о дифференциальных уравнениях. Авторы сознательно построили настоящий раздел в расчёте на внимательного читателя-химика, владеющего лишь минимальными, но достаточно прочными навыками в области тригонометрии и математического анализа.
4.3.8.2. Прежде всего, выпишем операторы повышения и понижения в сферических координатах, используя формулы (4.53) и (4.54):
(4.109)
В силу того, что собственные функции, получающиеся в результате действия операторов сдвига, подлежат нормировке, как это уже обсуждалось в разделе 4.3.5.10., мы имеем все основания определить эти операторы с точностью до постоянного множителя, т.е. вместо (4.109) ограничимся выражением
(4.110)
... лишь угловую часть лапласиана и имеет вид: . (6.23) Уравнение Лежандра, встречается в нескольких фундаментальных задачах: 1) в задаче о квантовых состояниях и энергетических уровнях ротатора - линейной молекулы, свободно вращающейся вокруг центра массы. 2) в уравнении Шрёдингера для атома H и водородоподобных ионов. 6.7.3. Уравнение Лежандра это вполне типичное операторное уравнение на
... решения выберем в виде комплексных экспонент , (3.29) По физическим соображениям можно волновой функции придать вид лишь одного из частных решений. Это связано со свойствами момента импульса в стационарном вращательном движении, которые мы рассмотрим в рамках соответствующего операторного уравнения , т.е. , (3.30) откуда следует, что собственная волновая ...
... калькуляции представлены в табл.4.2. Ленточный график работ 5. Безопасность жизнедеятельности и охрана труда Дипломная работа посвящена анализу погрешностей волоконно-оптического гироскопа. В ходе ее выполнения были проведены необходимые расчеты и сделаны выводы, которые могут послужить материалом для ...
0 комментариев