Всякая наука, изучающая природные явления, использует некоторую систему образов, моделирующих реальные предметы, их качества и связи, существующие между ними. Модель и ее образы всегда выделяют лишь наиболее существенные черты явления. Чем удачнее образы, чем точнее и глубже подмечены связи между ними, тем, как правило, более экономны и даже скупы средства математического описания явлений и тем обширнее область, на которую могут распространяться методы теории. Одним из важнейших принципов естественнонаучной теории принято считать, так называемую "бритву Оккама", а именно: "не умножай число сущностей без надобности". Критерий истины в любой научной теории один – опыт, т.е. согласие теоретических прогнозов с результатами эксперимента.
Одна из наиболее глубоких областей науки, очень несложная по применяемым математическим средствам, строгая и всеобъемлющая по своим выводам, – безусловно, термодинамика. Ее называют "королевой физики". Понятия термодинамики исторически оказали сильнейшее влияние на систему взглядов и образов квантовой механики. Не случайно великие умы ХХ-го века – Планк, Эйнштейн, Бор и многие другие – оставили неизгладимый след именно в этих разделах естествознания.
Химическая наука неотделима от этих двух фундаментальных разделов физики. Квантовая механика изучает свойства отдельных частиц, и том числе атомов, молекул и кристаллов, рассматривая их как физические системы, образованные из ядер и электронов. Термодинамика делает следующий шаг, переходя от отдельных частиц к их коллективам. Эти физические системы, коллективы, принято называть термодинамическими системами. Разумеется, многие понятия и образы обеих дисциплин перекрываются. Пока частиц в системе относительно немного и есть возможность проследить за поведением каждой из них, используется аппарат квантовой механики. Но, если число частиц увеличивается настолько, что проследить за ними по отдельности становится невозможным, мы переходим к термодинамическому методу.
Как правило, строгость теории связывают с возможностью ее математической формулировки и построением количественных критериев, которые можно было бы сопоставить с результатами экспериментальных измерений. На этой ступени развития и обобщения естественнонаучного знания ситуация наиболее точно передается словами переписки двух знаменитых ученых России – В.И. Вернадского и П.А. Флоренского: "Язык образов заменяется языком символов".
Символы и их математическая связь являются эквивалентами физических образов, моделирующих явления природы на уровне элементарных частиц и их образований, таких как атомы, молекулы и кристаллы. Квантовая механика использует мощный математический аппарат, в основе которого лежит теория операторов; предметом анализа последней являются математические действия над функциями – операторы. Причины этого станут ясными по мере обсуждения теории.
В каждой конкретной области естествознания используется свойственный ей минимальный набор образов, моделей и понятий, которые следует принять в качестве простейших, а прочие категории данной области науки будут конструироваться на их основе. В качестве исходных могут быть использованы разные системы образов, но они, всегда оказываются связанными между собой. Выбор исходных образов диктуется соображениями удобства, а подчас и просто вкусом исследователя. Эта ситуация прослеживается в классической механике. Так, системы уравнений Ньютона, Лагранжа, Гамильтона выводимы, и взаимозаменяемы. Так же обстоит дело и в термодинамике; например, существуют различные равносильные и взаимозаменяемые формулировки 2-го начала термодинамики. Такое же положение имеет место и в квантовой механике. Наша задача – выделить простейшие из ее категорий, которые достаточно рациональным способом позволяют рассматривать проблемы химии.
1.1. Состояния и уровни системы. Волновые функции
1.1.1. Квантово-механическая система – это одна частица или несколько частиц, взаимодействующих друг с другом и совершающих совместные движения, В классической механике одним из разделов является статика, которая рассматривает покоящиеся системы с взаимно неподвижными частями. В микромире, изучаемом методами квантовой механики, статические, покоящиеся системы немыслимы. Все частицы, образующие систему, – всегда в движении. Обсудим характер такого движения.
1.1.2. Проще всего это сделать для замкнутой устойчивой системы, не подверженной внешним воздействиям. Энергия такой системы постоянна, а частицы находятся в строгом периодическом движении. В атоме, например, электроны обращаются вокруг ядра; в молекуле ядерный остов совершает периодические движения – колебания и вращения, а электроны периодически движутся в поле ядер и т.д. При этом некоторая совокупность координатных характеристик периодически изменяется, но измерить мгновенные положения отдельных частиц в принципе невозможно, да в этом нет и необходимости. В то же время такие характеристики, как энергия, момент количества движения, частоты колебаний доступны для экспериментального определения с той или иной точностью.
1.1.3. Эта ситуация принципиально нова в сравнении с движением классических систем. В квантовом мире мгновенные координаты частиц и закон движения, как изменение этих координат во времени лишены смысла и их следует заменить иными понятиями. Важнейшее из таких понятий – понятие состояния. Под этим непростым, но и не подлежащим упрощению, понятием подразумевается вся совокупность измеримых характеристик системы.
1.1.4. Неизменные во времени состояния замкнутых систем называются стационарными, а неизменные параметры таких состояний – динамическими характеристиками. Движения в стационарных состояниях замкнутых систем строго периодичны, а частоты таких движений – их важнейшие характеристики, становятся характеристиками состояний.
1.1.5. У замкнутых систем, образованных из двух и более частиц, полная энергия отрицательна по знаку. При этом за нуль энергии принимается потенциальная энергия взаимодействия частиц, бесконечно удаленных друг от друга. В устойчивых состояниях потенциальная энергия сил сцепления считается отрицательной, и по модулю она больше суммарной кинетической. Полную энергию стационарного состояния системы называют энергетическим уровнем, или просто уровнем.
1.1.6. Экспериментально установлено, что стационарные состояния замкнутых систем образуют дискретные наборы. Дискретны и уровни таких систем. Несколько разных состояний могут иметь одинаковую энергию. В таком случае говорят, что энергетический уровень вырожден. Кратностью вырождения уровня называется число состояний с равной энергией.
1.1.7. Дискретные состояния квантово-механической системы образуют счетные множества. Элементы этих дискретных наборов можно нумеровать. В качестве множеств, пригодных для нумерации состояний и уровней, обычно используют множество натуральных чисел N {1, 2, 3…}, или Zо {0,1,2,3...}, или множество целых чисел – Z {...-2, -1, 0, +1, +2...}. Не исключены и другие дискретные множества, например {...-3/2, -1/2, +1/2, +З/2...}. Важно то, что соседние элементы таких множеств отличаются на 1.
1.1.8. Один из уровней замкнутой системы обладает минимально возможной для ее устойчивого существования энергией. Этот уровень называют основным. Обычно с него и начинают нумерацию в порядке возрастания энергии. Остальные уровни, энергия которых больше основного уровня, называют возбужденными.
1.1.9. Если для нумерации уровней пригодны множества N или Zо, то для нумерации состояний иногда их может оказаться недостаточно. У систем, имеющих вырожденные уровни, состояния внутри таких уровней нуждаются в добавочной нумерации. Здесь-то обычно и приходят на помощь фрагменты множества Z или других множеств.
1.1.10. Для каждого из состояний квантово-механической системы вводят свой математический образ и его символ. Такой образ называют волновой функцией, для нее используют символ , либо или какой-либо иной. Совокупность функций состояния называют спектром волновых функций системы и изображают набором – последовательностью:
1.1.11. Каждому состоянию отвечает свой энергетический уровень:
Е1, Е2, Е3,…Еk,….
Множество разрешенных значений энергии образует спектр уровней системы:
У вырожденных уровней нумерация может быть изменена и дополнена благодаря группировке состояний по уровням.
1.1.12. Введем важные понятия состояний "чистых" и состояний "смешанных". "Чистые" – это дискретные состояния, которые разрешены для частиц, находящихся в стационарных условиях, т.е. не подверженных никаким внешним воздействиям. Такая ситуация идеальна. Реально всякая частица (атом, молекула и т.п.) лишь одна из многих, входящих в термодинамическую систему образца. Последнюю обычно рассматривают в состоянии теплового равновесия, которое в простейшем случае поддерживается за счет соударений, т.е. обмена энергией и состояниями между отдельными частицами. Поэтому приходится ожидать, что всякое реальное состояние квантово-механической системы "смешанное" и включает в себя любое из возможных "чистых" состояний с вероятностью, которая определяется условиями теплового равновесия.
1.1.13. Часто волновую функцию состояния называют вектором состояний. Это связано с особенностями математического аппарата и обусловлено глубокой аналогией, существующей между векторами и волновыми функциями.
1.2. Приборы и измерения. Операторы. Операторные уравнения
1.2.1. Исходная физическая информация о природных явлениях, в том числе и такая; которая служит первоосновой для построения теории, всегда исходит лишь из результатов эксперимента. Важнейшей чертой научного опыта является количественное измерение характеристик исследуемых систем. Соответственным образом организуется последовательность действий, приводящая к численному значению измеряемой величины. Материальная система, обеспечивающая процедуру измерения, – это прибор, имеющий определенную конструкцию с необходимыми взаимосвязанными узлами. Из стандартных узлов можно составить комбинацию различной сложности и конечного назначения.
1.2.2. В классической физике, связанной с изучением макроскопических объектов, процесс измерения можно организовать так, что измерение никак не сказывается на состоянии системы. В таком случае говорят, что измерение не возмущает объект. Так, вряд ли имеет смысл исследовать влияние астрономических наблюдений за планетами на их движение.
1.2.3. В квантовой механике, изучающей микромир, все обстоит иначе. Ни один из способов наблюдения и измерения не свободен от воздействия прибора на изучаемый микрообъект. При этом обязательно имеет место взаимодействие микрочастиц измерительного узла (фотонов, электронов и т.п.) и микросистемы[1]. Таким образом, элементарный акт измерения микроскопичен, но конечная информация выводится из детектирующего, узла прибора в преобразованном макроскопическом виде.
1.2.4. Отсюда ясно, что в акте измерения два материальных объекта – изучаемая система и прибор – образуют единое целое. Этим определяются необходимые математические образы, используемые в квантовой механике. Следом за волновой функцией – образом состояния системы, требуется ввести еще два образа, а именно: образ измерительного устройства и образ процедуры измерения, увязывающей систему и прибор в эксперименте
1.2.5. Измерения суть операции – действия над системами. Естественно их образами считать также действия – математические преобразования, определенные над волновыми функциями, то есть операторы. Измеряемые характеристики разнообразны, и приборы, как известно, специализированы, но имеется несколько типов фундаментальных величин и соответствующих им измерений, которые отображаются операторами простейшего вида. О них речь пойдет ниже.
1.2.6. Численные характеристики изучаемого состояния квантово-механической системы являются и целью, и итогом измерения. Акт измерения не оставляет состояние системы неизменным. После него может произойти релаксация – возвращение системы в исходное состояние, но может совершиться переход в другое состояние, либо иные превращения. Все зависит от способа постановки эксперимента. В любом варианте представляет интерес лишь такая схема опыта, которая приводит к информации о предыстории системы, т.е. о состоянии, непосредственно предшествующем измерению. В процессе измерения выделим стадию исходную и завершающую, когда сигнал об измеряемой величине уже сформирован. Определим в этом процессе условно следующие элементы:
Прибор -метр | Исследуемая система | Величина на датчике прибора | Исследованная система |
1.2.7. Переведем наши рассуждения на язык математики. Для наглядности разделим поле страницы на три части вертикальными линиями и слева опишем словами существо акта измерения, выделяя построчно его узловые компоненты, далее введем ил математические символы-образы и, наконец, дадим комментарии:
Описание акта измерения | Символы и их математическое содержание | |
В акте измерения физической величины | ||
1) соответствующий прибор | Оператор измеряемой величины | |
2) взаимодействует с | Знак включения действия* – умножение оператора на – | |
3) системой, находящейся в k-м состоянии, | – волновую функцию k-го состояния | |
4) В результате формируется сигнал, несущий информацию о | = | Знак равенства, связывающий алгоритм преобразования с его результатами |
5) численном значении измеряемой величины | Число – собственное значение оператора | |
6) относящейся к | Знак умножения, связывающий это число и | |
7) исследуемому k-му состоянию | волновую функцию. |
*Обычно опускается.
1.2.8. В итоге в качестве математического образа все измерительной процедуры получаем операторное уравнение:
(1.1) |
Уравнения подобной структуры хорошо известны в математике. Это так называемые уравнения на собственные значения в матричной алгебре, а также в теории специальных функций, построенных в разделе некоторых типов дифференциальных уравнений.
... ;; он-то и представляет собой численное значение искомой физической величины. Резюме. Выражения 4.3 и 4.4 настолько важны, что без них было бы затруднительно построить математический аппарат квантовой механики. 4.2. О структуре операторного уравнения Способ расчёта динамических переменных из волновой функции оказывается настолько общей, что затрагивает самые важные вопросы о способах ...
... , координаты или импульсы, надлежит рассматривать как т.н. операторы. Переход от чисел к операторам – одна из наиболее дерзких идей в современной науке. Не вдаваясь в сущность значений операторов, отметим, что на сегодняшний день основная идея квантовой механики сводится к следующему: всем физическим величинам классической механики в квантовой механике соответствуют «свои» операторы, а численным ...
... есть считывание квантового состояния частиц и воссоздание этого состояния на удаленном расстоянии. Правда, согласно квантовой механике, как только будет считана вся нужная информация, объект исчезнет и снова появится на свет только после квантовой сборки. Современному научному значению слова "телепортация" соответствует следующая процедура: объект дезинтегрируется (разрушается его квантовое ...
... динамических переменных. При этом неопределенность в измерениях связана не с несовершенством измерительной техники, а с объективными свойствами микромира. Завершение построения аппарата квантовой механики породило острые дискуссии в отношении интерпретации этой теории, поскольку она существенно отличается от классических теорий. Важное отличие состоит в том, что в классических теориях ...
0 комментариев