2. Изменение коэффициента ЦФ базисной переменной всегда приводит к изменению значения ЦФ.

3. Эффект от изменения коэффициентов ЦФ может рассматриваться с двух позиций :

- с точки зрения сбыта нас интересуют равновесные цены;

- с точки зрения производства нас интересует диапазон изменения коэффициента ЦФ, ' в пределах которого текущий план производства остается оптимальным.

Нахождение диапазонов изменения запасов ресурсов

Недефицитные ресурсы

Если в оптимальном решении дополнительная переменная S i-ro ограничения базисная, то это ограничение является не связывающим (не активным в точке оптимума), а ресурс - недефицитный. В этом случае значение дополнительной базисной переменной дает диапазон изменения, в котором соответствующая компонента di может:

• Уменьшатся (в случае знака ограничения "<")

• Увеличивается (в случае знака ограничения ">").

Пусть S0 - значение соответствующей дополнительной переменной в точке оптимума. Тогда решение остаётся допустимым и оптимальным в диапазоне bi+ ∆ , где

Дефицитные ресурсы

Если в оптимальном решении некоторая дополнительная переменная небазисная, то существующее ' ей ограничение является связывающим (активным в точке оптимума), а ресурс - дефицитным.

Для ограничения типа "<":

Для ограничения типа ">":

Изменение коэффициентов Ц.Ф.

Существует диапазон изменения коэффициентов ' целевой функции как базисных так и не базисных переменных, в которых полученное решение остаётся оптимальным. Изменение коэффициента базисной переменной в пределах этого диапазона приводит к изменению значения целевой функции, так как Z = Ств*β, а одна из компонент вектора Св изменяется. Изменение коэффициента небазисной переменной не меняет значения задачи.

Для задачи на mах:

Базисные переменные:

Для базисной переменной диапазон устойчивости, в котором может изменяться коэффициент Ci , оставляя текущее решение оптимальным, задаётся выражением: Ci + ∆

где dj - относительная оценка переменной xj в текущем оптимальном решении.

Eсли отсутствуют  соответственно.

Не базисные переменные:

Для не базисной переменной диапазон устойчивости, в котором может изменятся коэффициент Сi оставляя текущее решение оптимальным, задаётся выражением:

Для задачи на min: Базисные переменные:

Для базисной переменной диапазон устойчивости, в котором может изменяться коэффициент Сi , оставляя текущее решение оптимальным, задаётся выражением: Сi + ∆

He базисные переменные:

Для не базисной переменной диапазон устойчивости, в котором может изменятся коэффициент С; оставляя текущее решение оптимальным, задаётся выражением:

 

(dN) < ∆ < ∞


2. Содержательная постановка задачи

Вариант 3/2

Транспортная компания для перевозки инжира из Багдада в Мекку использует мулов, одногорбых и двугорбых верблюдов. Двугорбый верблюд может перевезти - 1000 фунтов, одногорбый – 500 фунтов, а мул – 300 фунтов. За один переход двугорбый верблюд потребляет 2 кипы сена и 40 галлонов воды. Одногорбый верблюд потребляет 2 кипы сена и 30 галлонов воды. Мул – 1 кипу сена и 10 галлонов воды. Пункты снабжения компании, расположенные в различных оазисах вдоль пути, могут выдать не более 900 галлонов воды и 35 кип сена. Верблюды и мулы арендуются у пастуха близ Багдада, арендная плата равна 12 пиастрам за двугорбого верблюда, 5 пиастрам за одногорбого и 4 пиастрам за мула.

Если компания должна перевести 8000 фунтов инжира из Багдада в Мекку, сколько надо использовать верблюдов и мулов для минимизации арендной платы пастуху?


3. Математическая постановка задачи

Переменные:

Х1 - Двугорбый верблюд

Х2 - Одногорбый верблюд

Х3 – Мул

Целевая функция – минимизация арендной платы.

 

Zmin = 12Х1 + 5Х2+ 4Х3

 

Ограничения:

Использования ресурса «вода» не более 900 галлонов:

40Х1 + 30Х2+ 10Х3 < 900

Использования ресурса «сено» не более 35 кип:

3Х1 + 2Х2+ Х3 < 35

Компания должна перевести 8000 фунтов инжира:

1000Х1 + 500Х2 + 300Х3 =8000

Все переменные должны быть не отрицательны:

Х1, Х2, Х3 > 0


4. Решения задачи симплекс-методом

ЦФ:

Zmin = 12X1 + 5X2 + 4X3

Ограничения:

40X1 + 30X2 + 10X3 < 900

3X1 + 2X2 + X3 < 35

1000X1 + 500X2 + 300X3 = 8000

X1, X2, X3 > 0

Приведем задачу к канонической форме и введём искусственные переменные:

Zmin = 12X1 + 5X2 + 4X3 + 0S1 + 0S2 – MR1

40X1 + 30X2 + 10X3 + 0S1 = 900

3X1 + 2X2 + X3 + 0S2 = 35

1000X1 + 500X2 + 300X3 + R1 = 8000

X1, X2, X3 > 0

R1 = – 1000X1 – 500X2 – 300X3 + 8000

Zmin = 12X1 + 5X2 + 4X3 + 0S1 + 0S2 – M (– 1000X1 – 500X2 – 300X3 + 8000) = (12 + 1000M) X1 + (5 + 500M) X2 + (4 + 300M) X3 – 8000M

Z + (–12 – 1000M) X1 + (–5 – 500M) X2 + (–4 – 300M) X3 = – 8000M

Составляем симплекс таблицу:

Шаг 0
БП X 1 X2 X3 S1 S2 R1 решение
S1 40 30 10 1 0 0 900
S2 3 2 1 0 1 0 35
R1 1000 500 300 0 0 1 8000
Z -1000M+12 -500M+5 -300M+4 0 0 0 -8000M
Шаг 1
S1 0 10 -2 1 0 -1/25 580
S2 0 1/2 1/10 0 1 -3/1000 11
X1 1 1/2 3/10 0 0 1/1000 8
Z 0 -1 2/5 0 0 M-3/250 -96
Шаг 2
S1 -20 0 -8 1 0 -3/50 420
S2 -1 0 -1/5 0 1 -1/250 3
X2 2 1 3/5 0 0 1/500 16
Z 2 0 1 0 0 M-1/100 -80

В итоге: Z = 80, X1 = 0, X2 = 16, X3 = 0



Информация о работе «Решение и постоптимальный анализ задачи линейного программирования»
Раздел: Математика
Количество знаков с пробелами: 15943
Количество таблиц: 2
Количество изображений: 0

Похожие работы

Скачать
10424
5
0

... приведено значение целевой функции до начала вычислений, в столбце Результат - после оптимизации. Следующая таблица содержит значения искомых переменных (изменяемых ячеек) до и после решения задачи. оптимизация математическая электронная модель Последняя таблица показывает значения левых частей ограничений на оптимальном решении задачи. В столбце Формула приведены зависимости, которые были ...

Скачать
114067
0
4

... ряд соображений, которые этим расчетом не были учтены. В зависимости от того, какой информацией обладают руководитель и его сотрудники, подготавливающие решения, меняются и условия принятия решений и математические методы, применяемые для выработки рекомендаций. Если известны все действующие в системе факторы, то есть отстствуют случайные воздействия, то это будет принятие решений в ...

Скачать
14595
21
5

... 2 и 3. Трудоемкость товара 1 вдвое больше чем товара 2 и втрое больше чем товара 3 По условию задачи сказано, что минимальный спрос на продукцию завода составляет 50, 50 и 30 изделий моделей 1, 2 и 3 соответственно:    Запишем все в математическую модель задачи: 2. Решим данную задачу симплекс методом Перепишем условие мат. Модели таким образом, чтоб все ограничения задачи имели ...

Скачать
98974
4
0

... , которая способствует обеспечению перехода от «производства вещей» к «производству людей», что адекватно новому видению значимости человека в современном мире и общественном производстве. 2.3 Причины и факторы стремительного развития сферы услуг В современных публикациях можно встретить более или менее развернутый перечень причин стремительного развития сферы услуг, различных по значению и ...

0 комментариев


Наверх