3. Изучим погрешности произведения чисел.
(1.26)
(1.27)
отсюда очевидно, что
(1.28)
(1.29)
Таким образом, при умножении приближённых чисел, относительные погрешности складываются.
4. Рассмотрим погрешности деления чисел.
(1.30)
, (1.31)
Поэтому
(1.32)
(1.33)
Из вышеизложенных частных случаев следует, что при вычислениях на ЭВМ:
- нет смысла производить округление перед сложением (т.к. увеличим погрешность);
- при вычитании надо всячески избегать разности близких чисел;
- если вычисляем произведение чисел с k верными знаками, то в результате будем иметь не менее k-1 верных знаков;
- при делении действуют те же правила, что и при умножении, но надо избегать деления на малое число (близкое к нулю).
Вышеизложенная теория погрешностей основана на допущении, что -погрешности настолько малы, что их квадратами можем уже пренебрегать (на этом основано «обрезание» формулы Тейлора).
Поэтому все введённые формулы теряют силу, если эти условия нарушены. В таких случаях нужно использовать и квадратичные члены, чтобы получить более точную теорию.
Но надо учитывать, что в этом случае формулы значительно усложняются.
В заключение рассмотрим числовой пример:
Пример 5: Найти предельные абсолютную и относительную погрешности объёма шара , если см., .
Решение: ;
имеем:
; ; ;
; ; ;
(1.34)
(1.35)
Упражнение: вывести формулы предельной абсолютной и относительной погрешностей для функции , а далее для многочлена и рациональной функции.
Пример 6: Найти сумму приближённых чисел: и .
Решение:
, т.е. .
Пример 7: Найти относительную погрешность разности чисел и , если ,
т.е. если
Решение:
Именно поэтому избегают вычитания приближённых значений близких друг к другу чисел.
Пример 8: Найти произведение чисел, если все знаки верные: и .
Решение: , т.к. и ,
то имеем
и
следовательно
, т.е.
Окончательно имеем: .
Пример 9: Расстояние между двумя пунктами по прямой равно км.
За какое время звук распространится от одного пункта до другого в воздухе и по рельсам, если скорость звука в воздухе м/с, а в стали м/с?
Решение: (с.); (с.)
,
т.е.
(с.) (с.)
(с.) (с.)
... (5.16) Непосредственное использование оценок погрешности (5.4), (5.8) и (5.12) неудобно, так как при этом требуется вычисление производных функции f(x). В вычислительной практике используются другие оценки. Вычтем из равенства (5.15) равенство (5.16): Ih/2 – Ih » Chk(2k – 1). (5.17) Учитывая приближенное равенство (5.16), получим следующее приближенное ...
... . Рассмотрение метода ветвей и границ для решения задачи о коммивояжере удобнее всего проводить на фоне конкретного примера. Пользуясь введенными здесь обозначениями, мы проводим это описание в следующей лекции. Введем некоторые термины. Пусть имеется некоторая чис- ловая матрица. Привести строку этой матрицы означает выде-лить в строке минимальный элемент (его называют константой приведения) ...
... на языке Turbo Pascal 7.0 для решении систем линейных алгебраических уравнений, используя метод простой итерации. 1.2 Математическая формулировка задачи Пусть А – невырожденная матрица и нужно решить систему где диагональные элементы матрицы А ненулевые. 1.3 Обзор существующих численных методов решения задачи Метод Гаусса В методе Гаусса матрица СЛАУ с помощью равносильных ...
... Вычисли: + + 1 – ( + ) 9. Сложите пять чисел, первое из которых равно 5, а каждое следующее на больше предыдущего. Самостоятельная деятельность учащихся на уроке В настоящее время в помощь учителю математики выпущено много разнообразных таблиц, материалов для организации самостоятельной работы. Всё это призвано обеспечить самостоятельную работу каждого ученика, лучше ...
0 комментариев