Прямые методы решения систем линейных алгебраических уравнений

5929
знаков
0
таблиц
5
изображений

Реферат з курсу “Введение в численные методы”

Тема: “ПРЯМЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ”

 


Содержание

 

1. Метод последовательных приближений

2. Метод Гаусса-Зейделя

3. Метод обращения матрицы

4. Триангуляция матрицы

5. Метод Халецкого

6. Метод квадратного корня

Литература

 


1. Метод последовательных приближений

Наиболее распространенными методами применительно к большим системам являются итерационные методы, использующие разложение матрицы на сумму матриц, и итерационные методы, использующие факторизацию матрицы, т.е. представление в виде произведения матриц.

Простая итерация: уравнение  приводится к виду , например, следующим образом:

 ,

где  и  содержат произвольную матрицу коэффициентов, по возможности желательно близкую к .

Если выбрать A=H+Q так, чтобы у положительно определенной H легко находилась , тогда исходная система приводится к следующему удобному для итераций виду:

 .

В этом случае, при симметричной матрице A и положительно определенной Q итерационный процесс сходится при любом начальном .

Если взять H в виде диагональной матрицы D= , в которой лишь на главной диагонали расположены ненулевые компоненты, то этот частный случай называется итерационным методом Якоби.

2. Метод Гаусса-Зейделя

Метод Гаусса-Зейделя отличается тем, что исходная матрица представляется суммой трех матриц:


.

Подстановка в  и несложные эквивалентные преобразования приводят к следующей итерационной процедуре:

 .

Различают две модификации: одновременную подстановку и последовательную. В первой модификации очередная подстановка выполняется тогда, когда будут вычислены все компоненты нового вектора. Во второй модификации очередная подстановка вектора выполняется в тот момент, когда будет вычислена очередная компонента текущего вектора. В векторно-матричной форме записи последовательная подстановка метода Гаусса-Зейделя выглядит так:

 .

Вторая форма требует существенно меньшее число итераций.

3. Метод обращения матрицы

Эквивалентные преобразования матрицы в произведение более простых, приводящих к решению или облегчающих его получение, начнем с рассмотрения метода обращения матрицы. Так как в общем виде решение системы представляется через обратную матрицу в виде , то предположим, что

 ,


тогда, умножив справа равенство на матрицу A , получим

 .

Отсюда можно сделать вывод, что матрицы  должны последовательно сводить матрицу A к единичной. Если преобразующую матрицу выбрать так, чтобы только один ее столбец отличался от единичных векторов-столбцов, т.е.  , то вектор-столбец  можно сформировать таким, чтобы при умножении на текущую преобразуемую матрицу  в последней i-тый столбец превратился в единичный . Для этого берут

 и тогда .

Фактически это матричное произведение преобразует все компоненты промежуточной матрицы по формулам, применяемым в методе исключения Гаусса. Особенность этого процесса заключается в том, что диагональные элементы исходной и всех промежуточных матриц не должны быть нулевыми.

Кроме обратной матрицы, равной произведению всех T-матриц, теперь можно получать и решения уравнений для любого вектора в правой части.


4. Триангуляция матрицы

Разложение исходной матрицы на произведение двух треугольных матриц (триангуляция матрицы) не является однозначной. В соответствии с этим имеется несколько различных методов, привлекательных с той или иной стороны.

Сам способ формирования уравнений или формул для вычисления элементов треугольных матриц в различных методах практически одинаков: это метод неопределенных коэффициентов.

Различия возникают на стадии выбора условий разрешения полученных уравнений. Пусть

 ,

где  –

нижняя треугольная матрица,

 –

верхняя треугольная матрица.

Выполняя перемножения треугольных матриц и приравнивая получающиеся элементы соответствующим элементам исходной матрицы несложно для k-той строки и m-того столбца записать

 .

Полученная система состоит из  уравнений и содержит  неизвестных коэффициентов. За счет лишних n неизвестных существует свобода выбора, благодаря которой и имеется разнообразие методов разложения.

5. Метод Халецкого

Если положить , то разложение и последующее решение системы из двух векторно-матричных уравнений с треугольными матрицами называется методом Халецкого.

Элементы треугольных матриц L и U последовательно будут вычисляться по следующим формулам:

Если исходная матрица симметричная, то от треугольных матриц можно потребовать, чтобы они были друг к другу транспонированными, т.е., например,  и  так, что . В этом случае элементы треугольных матриц находятся в соотношении  и, следовательно, число неизвестных уменьшается вдвое. В результате элементы треугольной матрицы могут вычисляться по следующим формулам:


6. Метод квадратного корня

Использование разложения на взаимно транспонированные треугольные матрицы при решении систем алгебраических уравнений называется метод квадратного корня.

Метод разложения на транспонированные треугольные матрицы имеет модификацию, заключающуюся в выделении в произведении диагональной матрицы D с элементами на диагонали . Таким образом, для исходной матрицы, которая может быть и эрмитовой (симметричной и комплексно сопряженной), разыскивается произведение трех матриц: .

Каждое km-тое уравнение, определяется произведением k-того вектора-строки левой треугольной матрицы на диагональную матрицу, умноженную на m-тый столбец правой треугольной матрицы, и имеет вид:

 .

Для однозначного разложения, учитывая комплексную сопряженность симметричных элементов треугольных матриц, в первом уравнении (i=1), имеющем вид , полагают . В этом случае

 .

Аналогично, отделяя знак диагонального элемента диагональной матрицы от его модуля, можно получить формулы для вычисления :


 


Литература

 

1.    Хеннер Е. К., Лапчик М. П., Рагулина М. И. Численные методы. Изд-во: "Академия/Academia", 2004. – 384c.

2.    Бахвалов И. В. Численные методы. БИНОМ, 2008. – 636c.

3.    Формалев В. Д., Ревизников Д. Л. Численные методы. Изд-во: ФИЗМАТЛИТ®, 2004. – 400c.


Информация о работе «Прямые методы решения систем линейных алгебраических уравнений»
Раздел: Математика
Количество знаков с пробелами: 5929
Количество таблиц: 0
Количество изображений: 5

Похожие работы

Скачать
10852
1
1

... ,  i = 3, 4,..., m, ,  i = k+1,..., m, Применение метода к конкретной задаче (анализ) Составляя задачи на языке программирования Borland C++ Builder 6 для реализации точных методов решения СЛАУ я учитывал разное количество уравнений в системе (размерность матрицы задавал равным nxn). Но для проверки результатов использовал уравнения  (для проверки решения методом Гаусса) (2) и  (для ...

Скачать
15393
0
10

о неизвестных в уравнении. А это довольно таки трудоемко, особенно при больших порядках числа n. Еще одним точным методом для решения данных СЛАУ является рассматриваемый в данной работе метод квадратных корней для симметричной матрицы А. Изучать данный метод мы будем следующим образом. Сначала рассмотрим математическую постановку задачи для метода квадратных корней при решении СЛАУ. В данном ...

Скачать
33571
2
14

... Рисунок 1.1 - Схема информационных потоков для вычисления СЛАУ методом Гаусса Условные обозначения к рисунку 2.1:  - данные, вводимые с клавиатуры  - данные, хранящиеся на диске  - данные, выводимые на экран 2. Решение систем линейных алгебраических уравнений методом гаусса 2.1 Основные понятия Система линейных алгебраических уравнений (СЛАУ) из m уравнений с n неизвестными ...

Скачать
20755
0
0

... 10.4 9.7 9.7 -8.4 Результат вычислений по методу Гаусса x1 = 5.0000000000E+00 x2 = -4.0000000000E+00 x3 = 3.0000000000E+00 x4 = -2.0000000000E+00 2.2 Программа решения систем линейных уравнений по методу Зейделя 2.2.1. Постановка задачи. Требуется решить систему линейных алгебраических уравнений с вещественными коэффициентами вида a11x1 + a12x2 + … + a1nxn = b1 , a21x2 + ...

0 комментариев


Наверх