Основы теории вероятностей

2565
знаков
3
таблицы
1
изображение

Вариант 2

1. Решите уравнение

Решение:

По определению .

Тогда  и уравнение принимает вид  откуда получаем .

Ответ: .

2. В урне находится 7 белых и 5 черных шаров. Найти вероятность того, что два одновременно изъятых шара будут белыми.

Решение:

Изначально в урне 12 шаров и вероятность извлечь первый шар белый составляет . После того как извлечен первый белый шар в урне остается 11 шаров, из них 6 белых, следовательно вероятность извлечь второй белый шар составит .

В итоге вероятность совместного появления двух белых шаров равна:

Ответ: .

3. В ящике 10 деталей, из которых 4 стандартные. Контролер взял наудачу 3 детали. Найти вероятность того, что хотя бы одна из изъятых деталей окажется стандартной.

Решение:

События «хотя бы одна стандартная» и «все детали не стандартные» противоположны и сумма их вероятностей равна 1.

Найдем вероятность того, что 3 извлеченных детали не стандартные.

Общее число возможных элементарных исходов выбора 3-х деталей из 10 равно числу сочетаний из 10 элементов по 3: , где , тогда

Определим число исходов, благоприятствующих интересующему нас событию А (среди 3-х выбранных деталей 3 не стандартных). Три детали из 6 имеющихся можно выбрать  способами следовательно, число благоприятствующих исходов .

Искомая вероятность равна отношению числа исходов, благоприятствующих нужному событию, к числу всех элементарных исходов: .

Тогда искомая вероятность того, что хотя бы одна из изъятых деталей окажется стандартной равна:

Ответ: .

4. В коробке 7 карандашей, из которых 4 красные. Из этой коробки наудачу извлекается 3 карандаша. Х – число красных карандашей. Найти закон распределения случайной величины Х, функцию распределения и основные числовые характеристики.

Решение:

Среди 3-х извлеченных карандашей может быть 0, 1, 2 или 3 красных.

Найдем вероятность каждого исхода.

0 красных:

1 красный:

2 красных:

3 красных:

Закон распределения принимает вид:

Х 0 1 2 3
р

Запишем функцию распределения полученной случайной величины Х:

Математическое ожидание М(Х) дискретной случайной величины находится по формуле:

,

и подставляя данные получим:

Дисперсию дискретной случайной величины можно вычислить по формуле:

,

и, подставляя данные, получим:

Среднеквадратичное отклонение: s(Х)=

Ответ: ;;

5. По данной выборке постройте полигон. Найти эмпирическую функцию.

Хi 4 7 8
Ni 5 2 3

 

Решение:

Построим полигон частот – ломаную, соединяющую точки с координатами (Хi; Ni).

Объем выборки равен N = 5 + 2 + 3 = 10.

Найдем относительные частоты и составим эмпирическую функцию распределения:

Хi 4 7 8
wi 0,5 0,2 0,3

Ответ: решение выше.


Информация о работе «Основы теории вероятностей»
Раздел: Математика
Количество знаков с пробелами: 2565
Количество таблиц: 3
Количество изображений: 1

Похожие работы

Скачать
5963
1
2

... , причём i – заводпоставляет mi% изделий (i = 1, 2, 3). Среди изделий i – го завода n1% первосортных. Куплено одно изделие. Оно оказалось первосортным. Определить вероятность того, что купленное изделие выпущено i – заводом. m1 = 60 m2 = 20 m3 = 20 n1 = 70 n2 = 80 n3 = 90 Пусть: H1 – поставил первый завод H2 – поставил второй завод H3 – поставил третий завод Пусть: ...

Скачать
138817
24
10

... мышц и скоростью их сокращения, между спортивным достижением в одном и другом виде спорта и так далее. Теперь можно составить содержание элективного курса «Основы теории вероятностей и математической статистики» для классов оборонно-спортивного профиля. 1.  Комбинаторика. Основные формулы комбинаторики: о перемножении шансов, о выборе с учетом порядка, перестановки с повторениями, размещения с ...

Скачать
24510
0
0

... нашем примере: сила, с которой брошена монета, форма монеты и многие другие). Невозможно учесть влияние на результат всех этих причин, поскольку число их очень велико и законы их действия неизвестны. Поэтому теория вероятностей не ставит перед собой задачу предсказать, произойдет единичное событие или нет, она просто не в силах это сделать. Еще пример, выпадение снега в Москве 30 ноября является ...

Скачать
13681
1
0

... Первые два способа называются способами непосредственного подсчета вероятности, а классический основан на подсчете числа опытов благоприятствующих данному событию среди всех его возможных исходах. Основы теории вероятности Суммой событий Аi называется событие С состоящее в появлении события А или события В или их обоих вместе. Суммой события А и В называется событие С заключенное в ...

0 комментариев


Наверх