Введение

Математика – царица наук. Это выражение в своей жизни слышал, наверное, каждый человек. Образованный юрист тоже должен иметь представление о том, что такое высшая математика. Да, по роду своей деятельности ему не нужно выводить какие-либо формулы, высчитывать интегралы. Но все-таки знать, что такое синусы, косинусы, матрицы и другие математические определения ему необходимо.

При этом не следует забывать, что школа дает лишь элементарные математические знания, например, сложение и вычитание, умножение и деление, таблица умножения, то есть то, без чего человек не может обойтись в своей повседневной жизни. Наличие же высшего образования подразумевает под собой нечто большее, в частности, знания по высшей математике.

В данной работе мы не будем углубляться в разнообразные математические термины, не станем интегрировать дифференциальные уравнения, высчитывать матрицы. Мы рассмотрим теорию вероятностей, которая, на наш взгляд, наиболее приближена к юридическим наукам, потому что она развивает логическое мышление человека.

Итак, мы дадим определение случайным событиям, познакомимся с вероятностью событий, узнаем статическое и классическое определение вероятности, заострим внимание на ограниченности классического определения, приведем примеры вычисления вероятностей и сделаем выводы о проделанной работе.



1. Аксиоматика теории вероятностей

 

1.1 Краткая историческая справка

Первые работы, в которых зарождались основные понятия теории вероятностей, представляли собой попытки создания теории азартных игр (Кардано, Гюйгенс, Паскаль, Ферма и другие в XVI–XVII вв.).

Следующий этап развития теории вероятностей связан с именем Якоба Бернулли (1654–1705). Доказанная им теорема, получившая впоследствии название «Закона больших чисел», была первым теоретическим обоснованием накопленных ранее фактов.

Дальнейшими успехами теория вероятностей обязана Муавру, Лапласу, Гауссу, Пуассону и др.

Новый, наиболее плодотворный период связан с именами П.Л. Чебышева (1821–1894) и его учеников А.А. Маркова (1856–1922) и А.М. Ляпунова (1857–1918). В этот период теория вероятностей становится стройной математической наукой. Ее последующее развитие обязано в первую очередь русским и советским математикам (С.Н. Бернштейн, В.И. Романовский, А.Н. Колмогоров, А.Я. Хинчин, Б.В. Гнеденко, Н.В. Смирнов и др.). В настоящее время ведущая роль в создании новых ветвей теории вероятностей также принадлежит российским математикам.

1.2 Предмет теории вероятностей

Наблюдаемые нами события (явления) можно подразделить на следующие три вида: достоверные, невозможные и случайные.

Достоверным называют событие, которое обязательно произойдет, если будет осуществлена определенная совокупность условий S. Например, если в сосуде содержится вода при нормальном атмосферном давлении и температуре 20°, то событие «вода в сосуде находится в жидком состоянии» есть достоверное. В этом примере заданные атмосферное давление и температура воды составляют совокупность условий S.

Невозможным называют событие, которое заведомо не произойдет, если будет осуществлена совокупность условий S. Например, событие «вода в сосуде находится в твердом состоянии» заведомо не произойдет, если будет осуществлена совокупность условий предыдущего примера.

Случайным называют событие, которое при осуществлении совокупности условий S может либо произойти, либо не произойти. Например, если брошена монета, то она может упасть так, что сверху будет либо герб, либо надпись. Поэтому событие «при бросании монеты выпал «герб» – случайное. Каждое случайное событие, в частности выпадение «герба», есть следствие действия очень многих случайных причин (в нашем примере: сила, с которой брошена монета, форма монеты и многие другие). Невозможно учесть влияние на результат всех этих причин, поскольку число их очень велико и законы их действия неизвестны. Поэтому теория вероятностей не ставит перед собой задачу предсказать, произойдет единичное событие или нет, она просто не в силах это сделать.

Еще пример, выпадение снега в Москве 30 ноября является случайным событием. Ежедневный восход Солнца можно считать достоверным событием, а выпадение снега на экваторе – невозможным событием.

По-иному обстоит дело, если рассматриваются случайные события, которые могут многократно наблюдаться при осуществлении одних и тех же условий S, т.е. если речь идет о массовых однородных случайных событиях. Оказывается, что достаточно большое число однородных случайных событий независимо от их конкретной природы подчиняется определенным закономерностям, а именно вероятностным закономерностям. Установлением этих закономерностей и занимается теория вероятностей.

Итак, предметом теории вероятностей является изучение вероятностных закономерностей массовых однородных случайных событий.

Знание закономерностей, которым подчиняются массовые случайные события, позволяет предвидеть, как эти события будут протекать. Например, хотя, как было уже сказано, нельзя наперед определить результат одного бросания монеты, но можно предсказать, причем с небольшой, погрешностью, число появлений «герба», если монета будет брошена достаточно большое число раз. При этом предполагается, конечно, что монету бросают в одних и тех же условиях.

В последние годы основы теории вероятностей все шире и шире проникают в различные области науки и техники, способствуя их прогрессу.




Информация о работе «Аксиоматика теории вероятностей»
Раздел: Математика
Количество знаков с пробелами: 24510
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
66135
2
3

... понятия вероятности задача некоторой несостоятельности классического определения вероятности была решена. Однако наблюдаются попытки дать трактовку вероятности с более широких позиций, в том числе и с позиций теории информации. 2. Динамика развития понятия математического ожидания   2.1 Предпосылки введения понятия математического ожидания Одним из первых приблизился к определению понятия ...

Скачать
59066
6
49

... Доказать: По определению второй смешанной производной. Найдем по двумерной плотности одномерные плотности случайных величин X и Y. Т.к. полученное равенство верно для всех х, то подинтегральные выражение аналогично В математической теории вероятности вводится как базовая формула (1) ибо предлагается, что плотность вероятности как аналитическая функция может не существовать. Но т.к. в нашем ...

Скачать
125259
9
8

... {ξn (ω )}¥n=1 . Поэтому, во-первых, можно говорить о знакомой из математического анализа (почти) поточечной сходимости последовательностей функций: о сходимости «почти всюду», которую в теории вероятностей называют сходимостью «почти наверное». Определение 46. Говорят, что последовательность с. в. {ξn } сходится почти наверное к с. в. ξ при n ® ¥ , и пишут: ξn ...

Скачать
24036
5
6

... бесконечное число. Следствие: Вероятность невозможного события равна 0. По определению суммы имеет место неравенство W+V=W. W и V несовместные события. По третей аксиоме теории вероятности имеем: P(W+V)=P(Q)=P(U)=1 P(W)+P(V)=P(W) 1+P(V)=1 P(V)=1 Пусть W состоит из конечного числа элементарных событий W={E1, E2,..., Em} тогда по определению . Элементарные события несовместны, тогда по ...

0 комментариев


Наверх