1.       Сглаживание с помощью скользящей средней.

2.       Прогнозирование на основе экспоненциального сглаживания.

1. Сглаживание временных рядов осущ-ся с целью выявления тенденции изменения исследуемого показателя. Сущность сглаживания по скользящей средней состоит в замене исходных уравнений динамического ряда средними величинами, исчисленными для определенного интервала. Средние величины обязательно д.б. центрированы и соответствовать уровню определенной точки исходного ряда. Интервалы определения средней при выравнивании одного ряда д.б. одинаковыми. В расчетах скользящей средней участвуют все уровни динамического ряда, сглаженный ряд короче первоначального на (к-1) наблюдение, где к – величина интервала сглаживания. При нечетных интервалах средняя всегда центрирована исходя из расчетов. При четком интервале сглаживания к=2, 4, 6… скользящая средняя д.б. отнесена к средней точке в результате центрирования 2-х смежных скользящих средних. Длина интервала сглаживания зависит от траектории колеблемости исследуемого показателя и от числа уровней исходного динамического ряда. Длина интервала сглаживания часто определяется в соответствии с наилучшими вариантами исследуемых временных периодов. Более точные результаты выравнивания рядов дает применение взвешенных скользящих средних при этом каждому уровню ряда в пределах интервала сглаживания приписывается вес, зависящий от расстояния, от данного уровня до середины интервала сглаживания. Расчет сглаженных уровней ряда осущ-ся на основе уравнений поленомов разных степеней.

2. Суть метода экспоненциального сглаживания состоит в том, что временной ряд сглаживается с помощью взвешенной скользящей средней, в кот. приписываемые уровнем ряда подчиняются экспоненциальному закону, взвешенные уровни ряда характеризуют значение исследуемого показателя на конец интервала сглаживания. Т.о. придавая последним членам динамического ряда большую значимость чем первым. Основная цель экспоненциального сглаживания состоит в вычислении рекурентных поправок к коэф-ам уравнения тренда. Для прямолинейной зависимости вида у=а+вt расчеты ведутся след. образом:

-         определяются начальные условия сглаживания первого S0¹ и второго S0² порядка след. образом:

S0¹= a-(1-α)/α*b

S0² = a-2(1-α)/α*b

a, b – параметры уравнения тренда, построенного на основе анализа тенденции исходного временного ряда.

α=2/n+1

n – число уровней динамического ряда

- рассчитывается экспоненциальные средние первого и второго порядка

St¹(y)=α*yt + (1-α) * S¹t-1(y)

St²(y)=α * St¹(y) + (1-α) * S²t-1(y)

yt – начальный уровень исходного динамического ряда.

S¹t-1(y) – расчетное значение соответствующее начальному уровню сглаживания (для первого расчета) и экспоненциальной средней первого порядка для предыдущих расчетов (в случае последующих вычислений)

S²t-1(y) – расчетное значение соответствующее начальным условиям сглаживания и экспоненциальной средней предыдущего расчета второго порядка.

-         осуществляется оценка коэф-тов исходного уравнения трнда с учетом экспоненциальных весов.

аэ = 2 * St¹(y) - St²(y)

вэ = a/1-a * (St¹(y) - St²(y))

-         определяются расчетные уровни сглаженного ряда

yt1 = аэ + вэt1

yt2 = аэ + вэt2 и т.д.


t1, t2… - это порядковый номер временного периода, соотв-щий рассматриваемому сглаженному уровню. Использование этих расчетов позволяет определять прогнозное значение показателей для разных уравнений тренда. При увеличении кол-ва параметров в исходном уравнении тренда увелич-ся кол-во расчетов для начальных условий сглаживания и определяемых экспоненциальных средних.

 


Тема: Прогнозирование по корреляционно-регрессионным моделям

 

1.       Особенности прогнозирования по парным регрессионным моделям.

2.       Многофакторное прогнозирование.

3.       Прогнозирование по авторегрессионым моделям.

4.       Методы исключения автокорреляции из рядов динамики.

1. Корреляционный анализ предполагает изучение взаимосвязи м/у двумя и более показателями. Различают след. виды связей:

-         функциональные

-         статистические

Функциональная связь имеет место, если изменения одних явлений вызывают вполне определенное изменение других. Такие связи выражаются уравнениями строго определенного вида.

Статистическая связь – это разновидность статистических связей, хар-ся тем, что изменение одного признака под воздействием др. признаков явл. общим случаем, хар-им среднюю колеблемость рассматриваемых показателей.

Уравнение, отражающее статистическую связь м/у показателями называется уравнением регрессии. Разработка этого ур-я явл. способом кол-го представления влияния фактора и нескольких факторов на исследуемый показатель. Парные корреляционно-регрессионные модели отражают взаимосвязь м/у исследуемым показателем у и одним фактором х. в общем виде: y=f(x) частные:

y=a±bx; y=a+b/x

у – исследуемый (прогн-мый) показатель

х – фактор, оказывающий влияние на исследуемый показатель.

Прогнозирование по парным КРМ² включает след. этапы:

- выбор независимой переменной существенно влияющий на исследуемый показатель. Существенность влияния фактора на исследуемый показатель опред-ся по коэффициенту парной корреляции.

r = n*Σy*x – Σy * Σx / √n * Σy² - Σy² * √n * Σx² - Σx²

Для прогнозов используются такие связи, в кот. коэф-т парной корреляции превышает 0,8

-         определяется форма уравнения регрессии

-         оцениваются параметры уравнения регрессии с использованием метода наименьших квадратов

∑y = a*n + b∑x

∑y*x = a∑x + b∑x²

y = a ± bx

-         рассчитываются прогнозные значения исследуемого показателя у путем подстановки в построенное КР уравнение значения фактора х определяемого для периода упреждения след. способами:

·        путем расчета прогнозного значения фактора по уравнению тренда вида x = f(t)

·        путем подстановки в КР модель планируемого (нормативного) значения фактора х на перспективу.

2. Сущность многофакторного прогнозирования состоит в расчете прогнозных значений исследуемого показателя по уравнению множественного КР анализа, построенного на основе изучения взаимосвязей м/у показателем у и несколькими факторами х1, х2, …, хn существенно влияющими на него. В общем виде: полином 1-й степени:

у = а1х1 + а2х2 + … + аnxn

Этапы многофакторного прогнозирования:

-         анализ динамики исследуемого показателя;

-         установление факторов влияющих на исследуемый показатель и отбор наиболее существенных. Отбор наиболее существенных факторов для включения в модель множественной корреляции может осуществляться след. способами:

а) на основе расчета парных коэф-тов корреляции м/у у и каждым из факторов. В модель включаются факторы с наибольшими показателями парного коэф-та корреляции.

б) на основе расчета частных коэф-тов корреляции, кот. предлагают изучения воздействия 1-го из факторов на показатель у при закреплении других на постоянном уровне.

в) на основе пошагового КР анализа. В этом случае в результате последовательного включения факторов в модель оцениваются показатели расчетного критерия Стьюдента коэф-т множественной корреляции, частные коэф-ты корреляции и коэф-ты детерминации.

Окончательный отбор факторов осущ-ся для случая с наилучшими хар-ми модели. Если м/у факторами модели сущ-ет тесная связь, то такие факторы одновременно включать в модель нельзя. |r|>0,6 в этом случае наблюдается явление мультиколениарности. Количество факторов включаемых в модель многофакторного прогнозирования д.б. в 5-6 раз меньше числа наблюдений.

- устанавливается форма связи м/у у и факторами х путем анализа различных коэф-тов статистической оценки, а именно: коэф-т множественной корреляции хар-ет тесноту связи м/у у и всеми факторами; коэф-т детерминации хар-ет долю изменения у обусловленную воздействием включенных в модель факторов; анализом F, T- критериев; анализом ошибки аппроксимации Е< 10-15% хар-ет соответствие выбранного уравнения регрессии реальным экономическим условиям.

-         осущ-ся качественно-логический и статистический анализ многофакторного уравнения

-         рассчитываются прогнозные значения показателя у на основе предварительной экстраполяции тенденции для факторов х.

Многофакторный анализ позволяет устанавливать тенденции изменения показателей и оценивать варианты воздействия факторов на исследуемый показатель в перспективе.

3. Прогнозирование по авторегрессионым моделям основывается на выявлении и изучении взаимосвязей м/у последовательными значениями одной и той же случайной величины. Это имеет место в тех случаях, когда изменения исследуемого показателя обусловлены не столько действием на него каких-либо факторов, сколько внутренними объективными причинами.

Авторегрессионая модель имеет след. вид:

Yt = a1Yt-1 + a2Yt-2 + … + anYt-n, где

А1, а2, an – параметры уравнения авторегрессии

Yt-1 – значение исследуемого показателя (t-1) уровня ряда, отнесена к t-му уровню.

Yt-2 – значение исслед-го к уровню t

n – порядок уравнения авторегрессии.

Параметры авторегрессионого уравнения вида Yt = a1Yt-1 + a2Yt-2 рассчитываются по системе уравнений след. вида:

Σ(Yt*Yt-1) = a1 * ΣYt-1² + a2 * ΣYt-1 * Yt-2

Σ(Yt * Yt-2) = a1 * ΣYt-1 * Yt-2 + a2 * Σyt-2²


Наличие или отсутствие авторегрессии (автокорреляции) в рядах динамики определяется по критерию Дарбина -Уотсона

d = 2 * (1 – Σγt * γt-1 / Σγt², .где

γt – это отклонение фактических уровней исходного динамического ряда от их расчетных величин

γt = yф – yр

Расчетные величины – это те, кот. получены из уравнения тренда

ур = а±bt

γt-1 – отклонение уф от ур (t-1)-го уровня ряда, отнесенные к уровню t/

N – число уровней ряда.

Если расчетный критерий Дарбина-Уотсона

d = 0, то имеет место сильная положительная автокорреляция

d = 4, то имеет место сильная отрицательная автокорреляция

d = 2, то автокорреляция в рядах динамики отсутствует.

0<=d<=4

Если рассчитанный критерий d не соответствует определенным уровням, то наличие автокорреляции определяется в зависимости от длины динамического ряда по разработанной таблице с нижним и верхним уровнем критерия. Если d<dн (нижний уровень критерия), то в динамическом ряду имеет место автокорреляция. Если d>dв (верхний уровень критерия), то автокорреляция отсутствует. Если критерий находится в пределах dн и dв (dн<=d<=dв), то наличие корреляции или ее отсутствие м. подтвердиться только путем дополнительных вычислений для большего числа уровней ряда.

Причинами автокорреляции в динамических рядах м.б.:

-         неправильный выбор формы связи м/у переменными;

-         ошибки измерения исследуемых показателей, относящихся к разным уровням ряда;

-         в моделях корреляционно-регрессионного анализа не полный учет факторов, влияющих на у.

При прогнозировании по одиночным временным рядам наличие автокорреляции в исследуемом ряду уточняет прогнозные оценки. При прогнозировании по корреляционно-регрессионным моделям автокорреляция снижает точность и достоверность прогноза и является недопустимой, поэтому построение, анализ и использование в прогнозировании корреляционно-регрессионных зависимостей д. осущ-ся вместе с исключением явления автокорреляции из динамических рядов показателей у и х.

4. Для исключения автокорреляции из рядов динамики используют след. методы:

- Метод конечных разностей. В этом случае при использовании этого метода в качестве числовых величин, подлежащих обработке, выступают не исходные уровни динамических рядов, а разности последующего и предыдущего членов ряда к-го порядка, если связь м/у показателями у и х является линейной, то рассчитываются разности 1-го порядка, а уравнение парной корреляции имеет вид:

Δу = f(Δx) или Δу = а ± bΔx, где Δу = уt+1 – yi, где i – это номер уровня ряда

Δх = хi+1 – xi

Параметры а и b определяются по методу наименьших квадратов с соответственным преобразованием системы нормальных уравнений. Расчет прогнозных значений исследуемого показателя у осущ-ся на основе предварительного расчета его приращения в зависимости от предполагаемого изменения фактора х.

- Метод исключения тенденций основан на замене исходных уровней динамических рядов их отклонениями.

 γt = yф – ур, где ур, хр явл. ур-ем тренда, εt = хф – хр

Простейшим способом прогнозирования по отклонениям явл. функция γt = t(εt) и ее частный случай – прямолинейная зависимость вида: γt = α * εt/

α – параметр уравнения, вычисляемый из соотношения след. вида:

∑γtεt = α∑εt²

Прогноз исследуемого показателя определяется на основе ожидаемого отклонения показателя у по заданному отклонению фактора х.

- Метод Фримна – Воу. Основан на включении времени в уравнение регрессии. При этом прогнозирующая функция имеет след. вид:

у = a + bx + ct

Параметры уравнения рассчитываются по системе нормальных уравнений след. вида:

Σy = a * n + bΣx + cΣt

Σy*x = a∑x + bΣx² + cΣxt

Σyt = a*Σt + b∑t + cΣt²

Прогнозное значение исследуемого показателя у рассчитывается по данному уравнению с предварительным прогнозом фактора х и соответствующей подстановкой параметра времени t.


Тема: Методология планирования

 

1.         Принципы, методы и типы планирования.

2.         Система планов экономической организации.

3.         Содержание и особенности стратегического планирования.

4.         Сущность и виды стратегий.

5.         Сущность бизнес планирования и структура бизнес-плана.

1.       Принципы планирования:

-системность;

- непрерывность;

-         гибкость;

-         точность и целенаправленность.

Точность – это в какой степени план д.б. конкретизирован, детализирован.

-         альтернативность и оптимальность

Методы планирования:

-         по аналогии;

-         эвристический – интуитивные знания, опыт, экспертные оценки;

-         с использованием математических моделей;

-         методы социально-экономического анализа;

-         балансовый;

-         нормативный;

-         программно-целевой: разработка плана с поиском способов решения, реализации.

Типы планирования:

1.       В зависимости от временной ориентации идей планирования выделяют:

-         реактивное планирование (прошлый опыт);

-         преактивное планирование;

-         интерактивное планирование (творческие подходы к решению)

2.       В зависимости от степени неопределенности различают:

-         детерминированное пл-е (действия в полностью определенной среде);

-         вероятностное (пл-е вне определенной ситуации).

3.       В зависимости от горизонта планирования;

-         краткосрочные;

-         среднесрочные;

-         долгосрочные;

2.       Планы классифицируются след. образом:

-         по периоду планирования:

а) перспективные;

б) текущие;

в) оперативно-календарные;

-         по реализуемым функциям:

а) план мк;

б) план производства;

в) план мн;

г) план развития

-         в зависимости от целей организации:

а) наступательные;

б) оборонительные (удержание позиций, предупреждение банкротства);

в) ликвидационный.

Способы представления планов:

-         ординарное представление;

-         планы-графики, используются при ведении взаимообусловленных работ;

-         сетевые графики;

-         циклограммы.

3.       Стратегическое планирование предполагает разработку альтернативных вариантов будущего развития фирмы и связано с решением след. задач:

-         совершенствование управленческих функций;

-         развитие бизнеса;

-         привлечение инвестиций;

-         разработки и внедрения инноваций;

-         кадровой политики.

Процесс стратегического планирования состоит из след. этапов:

а) Установление миссии и целей.

б) Исследование внешней и внутренней среды;

в) стратегический анализ, предполагает сравнение целей и результатов в поведении фирмы в текущем периоде и на перспективу. В том числе конкурентный анализ.

г) формулировка стратегии;

д) конечный стратегический план включает:

-         миссию и цели фирмы;

-         стратегию организации;

-         политику действий фирмы.

Политика – это система ориентиров, устанавливающих способы решения задач и условия выполнения планов. Политика должна соответствовать след. принципам:

-         определенность;

-         стабильность и гибкость;

-         использование известных законов и фактов;

-         реалистичность руководства.

4.       Понятие и виды стратегий

Стратегия – это качественно определенное направление развития на основе координации и распределения ресурсов, учета и адекватного реагирования на изменение факторов внешней среды с целью достижения конкурентных преимуществ в долгосрочной перспективе.

Виды стратегий:

1.       Портфельная стратегия касается субъекта хозяйствования в целом и предполагает решение след. проблем:

-         привлечения инвестиций;

-         совершенствование инвестиционной деят-ти;

-         внедрение новых организационно-правовых структур хоз-я;

-         разработка и совершенствование структур управления и др.

Среди портфельных стратегий различают:

-         стратегии роста;

-         стратегии стабильности;

-         сокращения.

2.       Деловая стратегия касается отдельных деловых единиц с целью решения основных проблем.

3.       Функциональная стратегия разрабатывается для отдельных функциональных подразделений и структур.


Тема: Особенности прогнозирования цен и инфляции

 

1.       Методы прогнозирования цен.

2.       Прогнозирование инфляции.

1.       Методы прогнозирования цен:

-         Метод экспертных оценок. Применяется при анализе и прогнозе товарных рынков. При оценке уровня кредитоспособности товара, при формировании системы свойств изделия и определения их значимости для потребителя. Опрос осущ-ся среди специалистов и среди покупателей.

-       Методы корреляционно-регрессионного анализа. Разновидностью кор-рег-й модели явл. изучение взаимосвязи му ценой реализации товара и разницей м/у спросом и предложением товара на рынке.

Расчеты прогнозной цены ведутся след. образом;

А) Формируются динамические ряды цены реализации товара, объемов спроса и предложения товаров;

Б) Ранжируются динамический ряд цен и динамический ряд отклонения предложения от спроса;

В) Определяется форма связи, рассчитываются параметры модели;

Г) Осущ-ся расчет прогнозных значений цены на основе анализа перспектив прогнозно-коммерческой деят-ти;

-       Методы моделирования наибольшее распространение получили:

А) Статистическая теория игр предполагает обоснование оптимальных решений по ценам в зависимости от ситуации на рынке. При этом рассматриваются варианты снижения цены, предполагаемая реакция на это покупателей и возможные цены реализации товаров у конкурентов. В результате решение игровой модели определяется наилучная стратегия фирмы в сфере ценообразования, обеспечивающая min потерь.

Б) линейное программирование, предполагает решение задач оптимизации с учетом заданных условий.

- Параметрическое прогнозирование цен. Основываются на анализе качественных зависимостей м/у ценами и основными потребительскими свойствами товара. Прогнозируемая цена опред-ся след. образом:

Ц = ∑Бi * Квi * Об, где

Бi – бальная оценка i-го параметра нового изделия

Квi – коэф-т весомости i-го параметра

Об – средняя оценка одного балла базового изделия.

Об = Цб / ∑Бiб* Квi

Цб – цена базового изделия

Бiб – бальная оценка i-го параметра базового изделия.

-         Прогнозирование цен на основе анализа эластичности товаров

Кэ = ∆с/с ׃ ∆ц/ц

2.       Способы прогнозирования инфляции:

-         На основе индексов потребительских цен;

Ји = Јцt – Јцt-1 / Јцt-1 * 100%

Јцt – индексы цен в периоде t.

-         С учетом скрытой инфляции

Јц = Јц * Јд / Јто

Јд – индекс денежных доходов

Јто – индекс товарооборота

-         Корреляционно-регрессионный метод. В качестве факторов модели выступают:

А) изменения денежных доходов;

Б) изменения экспортных и импортных цен;

В) скорость денежного обращения;

Г) процентные ставки банков;

Д) объем валового внутреннего продукта.


Тема: Прогнозирование финансовых показателей

 

Анализ и прогноз фин-го показателя осущ-ся с целью:

1.       Определение тенденции фин-го показателя и параметров;

2.       Выявление факторов, влияющих на финансовые показатели с целью управления ими.

3.       Расчет показателей и параметров на перспективу.

Методы прогнозирования финансовых показателей;

-         Нормативное прогн-е в основе прогнозных расчетов лежат нормативы по статьям расходов по технологическим процессам, видам изделий, по центрам ответ-ти, а также желаемые состояния одних параметров и прогнозирование на их основе др.

-         Методы анализа критического объема продаж.

-         Методы корреляционно-регрессионного анализа. Управление взаимосвязями финансовых показателей состоит в определении перспективной величины одного при изменении др. в соответствии с разработанной стратегией.

-         Авторегрессионые модели.

-         Моделирование предполагает построение прогнозной бухгалтерской отчетности, основная задача – формирование прогнозного баланса обеспечения его сводимости. При этом используются след. способы:

1.       Метод процента от продаж. Предполагает прогнозирование отдельных статей фин-ой отчетности исходя из динамики объема реализации. Дает хорошие результаты, если фирма работает стабильно, произ-ые и коммерческие возможности используются полностью, рост объема продаж требует привлечения инвестиций.

2.       Метод «пробки». Связан с прогнозированием отдельных статей баланса с обоснованием финансовых решений по изменению др. статей.

3.       Прогнозирование отдельных статей отчетности исходя из их динамики и взаимосвязей. Прогноз финансовых показателей целесообразно представлять в вариантном и интервальном виде, что позволяет определять наилучшую стратегию управления финансами в краткосрочном и долгосрочном периодах при значительной степени неопределенности. Вариантное представление прогноза связано с использованием метода «анализа чувствительности прогноза» и основывается на определении пессимистических и оптимистических оценок разрабатываемого сценария. В основе расчетов лежат темпы изменения объемов продаж, хар-ер изменения издержек, варианты и величины обновления активов, результаты проводимой кредитной политики и т.д. Представление фин-ых показателей в интервальном виде связано с расчетом доверительной зоны прогнозных значений показателей ликвидности, рентабельности, платежеспособности и др., а также структуры финансирования и объема инвестирования средств.


Тема: Прогнозные модели внешнеэкономической деят-ти

Прогнозирование и планирование внешнеэк-кой деят-ти осущ-ся с целью выбора наиболее эффективных вариантов организации экспорта и импорта, определения емкости внутреннего и внешних рынков развития межгосударственного кооперирования и специализации. При пр-и и пл-и внешней торговли определяются динамика и структура экспорта и импорта, спрос и предложение на отдельные товары и торговые группы на конкретном рынке, динамика и уровень цен, внутренние издержки на товары, вовлекаемые в межгос-й оборот. Наибольшее распространение пр. внешнеэк-й деят-ти получили след. способы:

Многофакторные модели. В таких моделях в кач-ве у выступают:

-         общие показатели экспорта и импорта;

-         показатели внешн. торговли на уровне отрасли;

-         объем продаж конкретных товаров.

В качестве факторов модели выступают:

1.       при прогнозировании экспорта:

-         экспортные возможности экспортера, т.е. величина ВВП и объем НД, показатели объема пр-ва;

-         спрос на экспортную продукцию;

-         показатели к/сп-ти продукции. уровень качества товара;

-         показатели эффективности экспорта. Это отношение выручки от экспорта к затратам, если >1, то экспорт выгоден;

-         показатель курса валют, соотн-е валют влияет на экспорт и импорт;

-         расстояние м/у странами, показатель Тимбергена:

у = а0 * х1ª * х2ª * х3ª

х1 – ВВП экспортируемый;

х2 – ВВП импортируемый;

х3 – расстояние м/у странами.

2.       при прогнозировании импорта: В качестве х м. выступать:

-         потребность страны, отрасли в импортных товарах;

-         эф-ть импорта;

-         курс валют;

-         соотн-е мировых и внутренних цен на товары;

-         показатели доступности и эффективности кредитования.


Информация о работе «Прогнозирование и планирование в экономике»
Раздел: Экономика
Количество знаков с пробелами: 62491
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
30828
1
1

... внешнеэкономической деятельности. Балансы применяются также для выявления диспропорций в текущем периоде, вскрытия неиспользованных резервов и обоснования новых пропорций. Система балансов, используемых в прогнозировании и планировании, включает: материальные, трудовые и финансовые. В каждую из указанных групп входит ряд балансов. 2.6 Нормативный метод Нормативный метод является одним из ...

Скачать
47697
3
0

... поставленных целей; соблюдение законности в области хозяйственною права как органами власти, так и хозяйствующими субъектами. 2. Важнейшие принципы прогнозирования и планирования в условиях рыночной экономики Разработка прогнозов и планов должна основываться на методологических принципах. Основополагающим принципом прогнозирования является принцип альтернативности, который требует проведения ...

Скачать
71883
0
0

... с экономическими институтами РАН, как было в практике Госплана, непосредственно не взаимодействуют. «Научные» рекомендации исходят не оттуда.   2.2 Переход к программно-целевым методам бюджетного планирования Долгосрочные целевые программы разрабатываются органом исполнительной государственной власти или органом исполнительной власти местного самоуправления и утверждаются соответствующим ...

Скачать
38740
0
1

... объектам, регионам. Например, используются нормативы: социального развития – потребление на душу населения, прожиточный минимум, площадь жилая и др. 2. Система бюджетного прогнозирования и планирования РФ Финансовое планирование на общегосударственном и территориальных уровнях обеспечивается системой финансовых планов, которые увязываются с материальными и трудовыми балансами в стоимостном ...

0 комментариев


Наверх