4. Комплект методических пособий [38].
5.Программное обеспечение для сбора, анализа и обработки данных на КПК и ПК.
6. Цифровой микроскоп. Цифровой микроскоп приспособлен для работы в школьных условиях. Оптический микроскоп снабжен преобразователем визуальной информации в цифровую, обеспечивает возможность передачи изображения микрообъекта и микропроцесса в компьютер в реальном времени. Кроме того обеспечивается возможность его хранения, в том числе в форме цифровой видеозаписи, отображения на экране, распечатки, включения в презентацию [38].
Принцип действия цифровой лаборатории « Архимед»
· Сбор данных от датчиков и их первичная обработка осуществляется с помощью измерительного Интерфейса и КПК Palm с использованием беспроводной связи Bluetooth.
· После синхронизации КПК Palm и ПК данные можно просматривать на ПК, а затем производить дальнейшую обработку результатов.
· Сбор данных сразу на ПК также возможен в целях проведения демонстрационного эксперимента с использованием видеовозможностей программы [38].
1.3.2 Анализ методических разработок и материалов по применению цифровой лаборатории «Архимед» на уроках
Занятия с использованием ученического и фронтального эксперимента являются одним из важных этапов образовательного процесса по химии. Во время проведения лабораторных исследований ученику предоставляется возможность наблюдать и исследовать на практике теоретические положения, пройденные в рамках аудиторных занятий. Наглядность дает возможность быстрее и глубже усваивать изучаемую тему, помогает разобраться в трудных для восприятия вопросах, повышает интерес к предмету. Такую наглядность хорошо обеспечивает использование «Цифровых лабораторий естественных наук». Основной целью создания цифровой лаборатории – является повышение эффективности учебного процесса, в частности, по химии за счет использования интерактивности и возможностей деятельностного подхода.
Установка в школе оборудования цифровой лаборатории позволяет:
· перевести школьный практикум по химии на качественно новый уровень;
· подготовить учащихся к самостоятельной творческой работе по химии;
· осуществить приоритет деятельностного подхода к процессу обучения;
· развить у учащихся широкий комплекс общих учебных и предметных умений;
· овладеть способами деятельности, формирующими познавательную, информационную, коммуникативную компетенции.
Разработчики цифровой лаборатории предлагают в своих пособиях следующие опыты, для проведения на уроках, а также на факультативных занятиях по химии [38]:
1. Реакции нейтрализации (Взаимодействие гидроксида натрия с соляной кислотой)
2. Титрование в среде кислота/щёлочь
3. Окислительно-восстановительные реакции (Взаимодействие хлорида меди с алюминием)
4. Экзотермические реакции (Растворение гидроксида натрия в воде)
5. Эндотермические реакции (Растворение нитрата аммония в воде)
6. Закон Гесса. Аддитивность теплоты реакции
7. Теплота сгорания
8. Плавление и кристаллизация
9.Измерение калорийности продуктов питания [38]
10.Измерение кислотности различных напитков и бытовых моющих средств [40].
Недостатки цифровой лаборатории «Архимед»:
1. Согласно мнению компетентных авторов использование в цифровой лаборатории «Архимед» карманного компьютера на базе Palm OS® – не самый удачный выбор со стороны разработчиков. Компьютеры Palm® предназначены для использования в качестве электронной «записной книжки». Их удобно брать с собой в поездки, ходить с ними на работу и т.д. Они хотя и имеют функцию синхронизации с настольным ПК, не совместимы с ним по формату графических файлов, файловой системе и т.п. Компьютер, использующийся в цифровой лаборатории должен работать в тесном контакте с настольным ПК. Автор статьи считает, что для этой цели намного лучше подошел бы PocketPC® с операционной системой от Microsoft® [41].
2. Достаточно высокая погрешность измерений [41]
3. Не синхронизированное сохранение данных: программа Imagi Probe 2.0 сохраняет данные произвольно, а не в папки, выбираемые экспериментатором [41].
4. Неудобства при работе с температурным датчиком: согласно идее разработчиков цифровой лаборатории «Архимед» температурный датчик необходимо целиком помещать в вещество, температуру которого мы хотим измерить. При этом возникает вопрос об измерении температуры газа в термодинамическом процессе. Ведь датчик должен быть соединен проводом с «Измерительным Интерфейсом». При этом необходимо будет нарушить герметизацию сосуда, а это испортит весь эксперимент. Так что при проведении термодинамических процессов приходится ограничиваться показаниями температуры воздуха рядом с исследуемым сосудом [41].
Несмотря на выделенные недостатки следует отметить, что цифровая лаборатория «Архимед» – это достаточно успешно используемая сегодня в практике обучения по физике, химии, биологии, экологии и пр. лаборатория. Учителями создаётся и опробуется целый ряд методик применения КПК на уроках. Институт новых технологий проводит конкурсы подобных методических разработок [3]; материалы по применению цифровых лабораторий «Архимед» стали все чаще появляться в трудах образовательных конференций и конгрессов и в публикациях прессы [5, 10, 15] (причем размещенный в Интернете отчет о проведении семинара «Новые технологии в образовании» [15] сопровождается видеоматериалами, демонстрирующими учебную работу с КПК). Наконец, Московский Институт Открытого Образования (МИОО, http://www.mioo.ru) организовал в 2004 г. в числе методических мероприятий для учителей физики начальный и базовый курсы по использованию цифровых лабораторий «Архимед» в учебном процессе, тем самым выводя тематику применения КПК в отечественной системе образования на «официально признанный» уровень.
Глава 2. методы исследования
2.1 Настройка работы и регистрация данных с помощью цифровой лаборатории «Архимед»
1. Запуск MultiLab CE.
Для запуска программы MultiLab CE выберите команду Пуск → Программы → Наука → MultiLab CE.
2. Настройка датчиков.
· В меню Регистратор выберите команду Настройка.
· Далее откройте вкладку Датчики, флажок «Автоопределение» удалён, поэтому самостоятельно выбираем подключённые датчики в выпадающем меню полей: датчик температуры и датчик рН.
· Откройте вкладку Частота и выберите частоту опроса: например, 1 замер в секунду. Затем откройте вкладку Замеры и в выпадающем меню выберите количество замеров: например, 500.
... литературе, студентам, изучающим русскую литературу в вузах. 2) Лингафонный кабинет предназначен для активного обучения иностранным языкам под наблюдением преподавателя с применением современных технических средств. Мультимедийные лингафонные кабинеты, которыми оснащаются современные школы, представляют собой последнее слово в технике и технологиях. Тип оборудования – встраиваемое или настольное ...
... школы. Мебель кабинета физики. Особенности оснащения и оборудования кабинета физики сельской школы. Рабочее место ученика и учителя в кабинете физики сельской школы. Кабинет физики в условиях разноуровневого обучения. Системы освещения и затемнения кабинета. Экскурсия в кабинет физики городской школы. 4. Работа заведующего кабинетом физики (5ч.) Права и обязанности заведующего кабинетом физики. ...
... " и т.п.), продвинутые платежные средства (такие, как цифровая наличность или цифровые чеки) фактически, с технологической точки зрения и есть реализация сложных криптографических протоколов. До недавнего времени (точнее, до середины 70-х гг.) вопроса об использовании фирмами и гражданами криптографии обычно не возникало. Однако, распространение быстродействующей вычислительной техники, с одной ...
... приборы (рычажные весы, электроскоп и др.); -работы, выполняемые на приборах, выпускаемых промышленностью. Классификация взята из [1]. В своей книге [2] С.Ф. Покровский показал, что домашние опыты и наблюдения по физике, проводимые самими учащимися: 1)дают возможность нашей школе расширить область связи теории с практикой; 2)развивают у учащихся интерес к физике и технике; 3)будят ...
0 комментариев