2.1 Основные цели обучения математике
Овладение всеми учащимися элементами мышления и деятельности, которые наиболее ярко проявляются в математической ветви человеческой культуры и которые необходимы каждому для полноценного развития в современном обществе.
Создание условий для зарождения интереса к математике и развития математических способностей одаренных школьников.
Цели обучения математике (в узком смысле) : общеобразовательные, воспитательные, развивающие.
Общеобразовательные цели: овладение учащимися системой математических знаний, умений и навыков, дающей представление о предмете математики, о математических приемах и методах познания, применяемых в математике.
Воспитательные цели: воспитание активности, самостоятельности, ответственности; воспитание нравственности, культуры общения; воспитание эстетической культуры, воспитание графической культуры школьников.
Развивающие цели: формирование мировоззрения учащихся, логической и эвристической составляющих мышления, алгоритмического мышления; развитие пространственного воображения.
Цели обучения могут формулироваться по-разному в зависимости от их ориентации. Например, можно определить цель обучения через деятельность учителя; через учебную деятельность учащихся.
Достижение целей обучения математике определяется функциями обучения математике.
2.2Основные дидактические принципы в обучении математике
Дидактика (греч. слово, означающее - поучающий) - отрасль педагогики, разрабатывающая теорию образования и обучения. Предметом дидактики являются закономерности и принципы обучения, его цели, научные основы содержания образования, методы, формы и средства обучения.
Задачи дидактики состоят в том, чтобы: описывать и объяснять процесс обучения и условия его реализации; разрабатывать более совершенную организацию процесса обучения, новые обучающие системы и технологии. В дидактике обобщены те положения в обучении той или иной учебной дисциплине, которые имеют универсальный характер.
Принципы обучения - это руководящие идеи, нормативные требования к организации и проведению дидактического процесса. Они носят характер общих указаний, правил, норм, регулирующих процесс обучения. Принципы обучения – это система важнейших требований, соблюдение которых обеспечивает эффективное и качественное развитие учебного процесса.
Дидактические принципы обучения математике представляют по существу совокупность единых требований, которым должно удовлетворять обучение математике: принцип научности; принцип воспитания; принцип наглядности; принцип доступности; принцип сознательности и активности; принцип прочности усвоения знаний; принцип систематичности; принцип последовательности; принцип учета возрастных особенностей; принцип индивидуализации обучения; принцип воспитывающего обучения.
В основу концепции математического образования сегодня положены следующие принципы:
- научности в обучении математике;
- сознательности, активности и самостоятельности в обучении математике;
- доступности в обучении математике;
- наглядности в обучении математике;
- всеобщность и непрерывность математического образования на всех ступенях средней школы;
- преемственность и перспективность содержания образования, организационных форм и методов
обучения;
- систематичности и последовательности;
- системности математических знаний;
- дифференциация и индивидуализация математического образования, создание таких условий, при которых возможен свободный выбор уровня изучения математики;
- гуманизация математического образования;
- усиление воспитательной функции обучения математике;
- практической направленности обучения математике;
- применения альтернативного учебно-методического обеспечения;
- компьютеризации обучения и т.д.
Информационно-развивающие методы обучения разделяются на два класса:
а) передача информации в готовом виде (лекция, объяснение, демонстрация учебных кинофильмов и видеофильмов, слушание магнитозаписей и др.);
б) самостоятельное добывание знаний (самостоятельная работа с книгой, самостоятельная работа с обучающей программой, самостоятельная работа с информационными базами данных - использование информационных технологий).
К проблемно-поисковым методам относятся: проблемное изложение учебного материала (эвристическая беседа), учебная дискуссия, лабораторная поисковая работа (предшествующая изучению материала), организация коллективной мыслительной деятельности (КМД) в работе малыми группами, организационно-деятельностная игра, исследовательская работа.
Репродуктивные методы: пересказ учебного материала, выполнение упражнения по образцу, лабораторная работа по инструкции, упражнения на тренажерах.
Творчески-репродуктивные методы: сочинение, вариативные упражнения, анализ производственных ситуаций, деловые игры и другие виды имитации профессиональной деятельности.
Составной частью методов обучения являются приемы учебной деятельности учителя и учащихся (М.И. Махмутов). Методические приемы - действия, способы работы, направленные на решение конкретной задачи. За приемами учебной работы скрыты приемы умственной деятельности (анализ и синтез, сравнение и обобщение, доказательство, абстрагирование, конкретизация, выявление существенного, формулирование выводов, понятий, приемы воображения и запоминания).
Методы обучения постоянно дополняются современными методами обучения, главным образом ориентированными на обучение не готовым знаниям, а деятельности по самостоятельному приобретению новых знаний, т.е. познавательной деятельностью[5].
Специальные методы обучения - это адаптированные для обучения основные методы познания, применяемые в самой математике, характерные для математики методы изучения действительности (построение математических моделей, способы абстрагирования, используемые при построении таких моделей, аксиоматический метод).
... научного знания, с принципами построения научных теорий в единстве и противоположности математики и естественных и гуманитарных наук, с критериями истинности в разных формах человеческой деятельности. Заключение В исследовании внимание уделяется поиску конкретных новых событий и явлений и последовательному изложению выверенных фактов истории развития методики преподавания математики в России
... учащихся, школьную документацию, сделать выводы о степени усвоения данного понятия. Подвести итог об исследовании особенностей математического мышления и процесса формирования понятия комплексного числа. Описание методов. Диагностические: I этап. Беседа проводилась с учителем математики, которая в 10Є классе преподает алгебру и геометрию. Беседа состоялась по истечении некоторого времени с начала ...
... детальный разбор этого материала при активной работе учащихся. Тщательно рассматриваются все определения, прорешиваются примеры – идет усвоение нового материала. 2.2 Методика введения показательной функции Изучение темы «Показательная функция» в курсе алгебры и начала анализа предусматривает знакомство учащихся с вопросами: Обобщение понятия о степени; понятие о степени с иррациональным ...
... при ошибке в его выборе, учитывать по уровневый подход. 4. Математика должна входить в набор обязательных учебных предметов любого из профилей.2 МАТЕМАТИЧЕСКИЙ ФАКУЛЬТАТИВ КАК ВЕДУЩАЯ ФОРМА ПРОФИЛЬНОГО ОБУЧЕНИЯ МАТЕМАТИКЕ В ОБЩЕОБРАЗОВАТЕЛЬНОЙ ШКОЛЕ2.1. Организационно-педагогические условия успешного функционирования математических факультативов Еще на рубеже XIX и XX вв. некоторые ...
0 комментариев