3.5. Прием аналогии

Понятие «аналогичный» в переводе с греческого языка означает «сходный», «соответственный», понятие аналогия – сходство в каком–либо отношении между предметами, явлениями, понятиями, способами действий.

В процессе обучения математике учитель довольно часто говорит детям: «Сделайте по аналогии» или «Это аналогичное задание». Обычно такие указания даются с целью закрепления тех или иных действий (операций). Например, после рассмотрения свойств умножения суммы на число предлагаются различные выражения:

(3+5) •2, (5+7)•3, (9+2) *4 и т. д., с которыми выполняются действия, аналогичные данному образцу.

Но возможен и другой вариант, когда, используя аналогию, ученики находят новые способы деятельности и проверяют свою догадку. В этом случае они сами должны увидеть сходство между объектами в некоторых отношениях и самостоятельно высказать догадку о сходстве в других отношениях, т. е. сделать заключение по аналогии. Но для того, чтобы учащиеся смогли высказать «догадку», необходимо определенным образом организовать их деятельность. Например, ученики усвоили алгоритм письменного сложения двузначных чисел. Переходя к письменному сложению трехзначных чисел, учитель предлагает им найти значения выражений: 74+35, 68+13, 54+29 и т. д. После этого спрашивает: «Кто догадается, как выполнить сложение таких чисел: 254+129?». Выясняется, что в рассмотренных случаях складывали два числа, то же самое предлагается в новом случае. При сложении двузначных чисел их записывали одно под другим, ориентируясь на их разрядный состав, и складывали поразрядно. Возникает догадка – вероятно, так же можно складывать и трехзначные числа. Заключение о правильности догадки может дать учитель или предложить детям сравнить выполненные действия с образцом.

Умозаключение по аналогии возможно также применять при переходе к письменному сложению и вычитанию многозначных чисел, сравнивая его со сложением и вычитанием трехзначных.

Умозаключение по аналогии можно использовать при изучении свойств арифметических действий. В частности, переместительного свойства умножения. Для этой цели учащимся сначала предлагается найти значения выражений:

6+3 7+4 8+4 3+6 4+7 4+8

– Каким свойством вы воспользовались при выполнении задания? (Переместительным свойством сложения).

– Подумайте: как установить, выполняется ли переместительное свойство для умножения?

Учащиеся по аналогии записывают пары произведений и находят значение каждого, заменяя произведение суммой.

Для правильного умозаключения по аналогии необходимо выделить существенные признаки объектов, в противном случае вывод может оказаться неверным. Например, некоторые учащиеся пытаются применить способ умножения числа на сумму при умножении числа на произведение. Это говорит о том, что существенное свойство данного выражения – умножение на сумму, оказалось вне их поля зрения.

Формируя у младших школьников умение выполнять умозаключения по аналогии, необходимо иметь в виду следующее:

• Аналогия основывается на сравнении, поэтому успех ее применения зависит от того, насколько ученики умеют выделять признаки объектов и устанавливать сходство и различие между ними.

• Для использования аналогии необходимо иметь два объекта, один из которых известен, второй сравнивается с ним по каким–либо признакам. Отсюда, применение приема аналогии способствует повторению изученного и систематизации знаний и умений.

• Для ориентации школьников на использование аналогии необходимо в доступной форме разъяснить им суть этого приема, обратив их внимание на то, что в математике нередко новый способ действий можно открыть по догадке, вспомнив и проанализировав известный способ действий и данное новое задание.

• Для правильных действий по аналогии сравниваются признаки объектов, существенные в данной ситуации. В противном случае вывод может быть неверным.

• Задание 88. Приведите примеры умозаключений по аналогии, которые возможно использовать при изучении алгоритмов письменного умножения и деления.

3.6. Прием обобщения

Выделение существенных признаков математических объектов, их свойств и отношений – основная характеристика такого приема умственных действий, как обобщение.

Следует различать результат и процесс обобщения. Результат фиксируется в понятиях, суждениях, правилах. Процесс же обобщения может быть организован по–разному. В зависимости от этого говорят о двух типах обобщения – теоретическом и эмпирическом.

В курсе начальной математики наиболее часто применяется эмпирический тип, при котором обобщение знания является результатом индуктивных рассуждений (умозаключений).

В переводе на русский язык «индукция» означает «наведение», поэтому, используя индуктивные умозаключения, учащиеся могут самостоятельно «открывать» математические свойства и способы действий (правила), которые в математике строго доказываются.

Для получения правильного обобщения индуктивным способом необходимо:

1) продумать подбор математических объектов и последовательность вопросов для целенаправленного наблюдения и сравнения;

2) рассмотреть как можно больше частных объектов, в которых повторяется та закономерность, которую ученики должны подметить;

3) варьировать виды частных объектов, т. е. использовать предметные ситуации, схемы, таблицы, выражения, отражая в каждом виде объекта одну и ту же закономерность;

4) помогать детям словесно формулировать свои наблюдения, задавая наводящие вопросы, уточняя и корректируя те формулировки, которые они предлагают.

Рассмотрим на конкретном примере, как можно реализовать приведенные рекомендации. Для того чтобы подвести учащихся к формулировке переместительного свойства умножения, учитель предлагает им такие задания:

Рассмотрите рисунок и попробуйте быстро подсчитать, сколько окон в доме.

Дети могут предложить следующие способы: 3+3+3+3, 4+4+4 или 3*4=12; 4*3=12.

Учитель предлагает сравнить полученные равенства, т. е. выявить их сходство и различие. Отмечается, что оба произведения одинаковые, а множители переставлены.

Аналогичное задание учащиеся выполняют с прямоугольником, который разбит на квадраты. В результате получают 9*3=27; 3*9=27 и словесно описывают те сходства и различия, которые существуют между записанными равенствами.

Ученикам предлагается самостоятельная работа: найти значения следующих выражений, заменив умножение сложением:

3*2 4*2 3*6 4*5 5*3 8*4 2*3 2*4 6*3 5*4 3*5 4*8

Выясняется, чем похожи и чем отличаются равенства в каждом столбике. Ответы могут быть такими: «Множители одинаковые, они переставлены», «Произведения одинаковые» или «Множители одинаковые, они переставлены, произведения одинаковые».

Учитель помогает сформулировать свойство с помощью наводящего вопроса: «Если множители переставить, то что можно сказать о произведении?»

Вывод: «Если множители переставить, то произведение не изменится» или «От перестановки множителей значение произведения не изменится».

• Задание 89. Подберите последовательность заданий, которые можно использовать для выполнения индуктивных умозаключений при изучении:

а) правила «Если произведение двух чисел разделить на один множитель, то получим другой»:

б) переместительного свойства сложения;

в) принципа образования натурального ряда чисел (если к числу прибавить единицу, то получим следующее при счете число; если вычесть 1, то получим предыдущее число);

г) взаимосвязей между делимым, делителем и частным;

д) выводов: «сумма двух последовательных чисел есть число нечетное»; «если из последующего числа вычесть предыдущее, то получится I»; «произведение двух последовательных чисел делится на 2»; «если к любому числу прибавить, а затем вычесть из него одно и то же число, то получим первоначальное число».

Опишите работу с этими заданиями, учитывая методические требования к использованию индуктивных рассуждений при изучении нового материала.

Формируя у младших школьников умение обобщать наблюдаемые факты индуктивным способом, полезно предлагать задания, при выполнении которых они могут сделать неверные обобщения.

Рассмотрим несколько таких примеров:

Сравни выражения, найди общее в полученных неравенствах и

сделай соответствующие выводы:

2+3 ...2*3 4+5...4*5 3+4...3*4 5+6...5*6

Сравнив данные выражения и отметив закономерности: слева записана сумма, справа произведение двух последовательных чисел; сумма всегда меньше произведения, большинство детей делают вывод: «сумма двух последовательных чисел всегда меньше произведения». Но высказанное обобщение ошибочно, так как не учтены случаи:

0+1 ...0*1

1+2... 1*2

Можно попытаться сделать правильное обобщение, в котором будут учтены определенные условия: «сумма двух последовательных чисел, начиная с числа 2, всегда меньше произведения этих же чисел».

Найди сумму. Сравни ее с каждым слагаемым. Сделай соответствующий вывод.

Слагаемое 1 2 3 4 5 6
Слагаемое 4 4 4 4 4 4
Сумма

На основе анализа рассмотренных частных случаев учащиеся приходят к выводу, что: «сумма всегда больше каждого из слагаемых». Но его можно опровергнуть, так как: 1+0=1, 2+0=2. В этих случаях сумма равна одному из слагаемых.

V Проверь, будет ли делиться каждое слагаемое на число 2, и сделай вывод.

(2+4):2=3 (4+4):2=4 (6+2):2=4 (6+8):2=7 (8+10):2=9

Анализируя предложенные частные случаи, дети могут прийти к заключению, что: «если сумма чисел делится на 2, то каждое слагаемое этой суммы делится на 2». Но этот вывод ошибочный, так как его можно опровергнуть: (1+3):2. Здесь сумма делится на 2, каждое слагаемое не делится.

• Задание 90. Используя содержание курса начальной математики, придумайте задания, при выполнении которых ученики могут сделать неверные индуктивные заключения.

Большинство психологов, педагогов и методистов считают, что эмпирическое обобщение, в основе которого лежит действие сравнения, для младших школьников наиболее доступно. Этим, собственно, и обусловлено построение курса математики в начальных классах.

Сравнивая математические объекты или способы действий, ребенок выделяет их внешние общие свойства, которые могут стать содержанием понятия. Тем не менее, ориентир на внешние, доступные для восприятия свойства сравниваемых математических объектов не всегда позволяет раскрыть сущность изучаемого понятия или усвоить общий способ действий. При эмпирическом обобщении учащиеся часто сосредотачиваются на несущественных свойствах объектов и на конкретных ситуациях. Это отрицательно сказывается на формировании понятий и общих способов действий. Например, формируя понятие «больше на», учитель обычно предлагает серию конкретных ситуаций, отличающихся друг от друга лишь числовыми характеристиками. На практике это выглядит так: детям предлагается положить в ряд три красных кружка, под ними положить столько же синих, затем выясняется – как сделать так, чтобы в нижнем ряду кружков стало больше на 2 (добавить 2 кружка). Затем учитель предлагает положить в первый ряд 5 (4,6,7 ...) кружков, во второй ряд на 3 (2,5,4 ...) больше. Предполагается, что в результате выполнения таких заданий у ребенка сформируется понятие «больше на», которое найдет свое выражение в способе действий: «взять столько же и еще ...». Но, как показывает практика, в центре внимания учащихся в этом случае, прежде всего, остаются различные числовые характеристики, а не сам общий способ действия. Действительно, выполнив первое задание, ученик может сделать вывод только о том, как «сделать больше на 2», выполнив следующие задания – «как сделать больше на 3 (на 4, на 5)» и т. д. В итоге, обобщенная словесная формулировка способа действия: «нужно взять столько же и еще» дается учителем, и большинство детей усваивают понятие «больше на» только в результате выполнения однообразных тренировочных упражнений. Поэтому они способны выполнять те или иные рассуждения только в рамках данной конкретной ситуации и на ограниченной области чисел.

В отличие от эмпирического, теоретическое обобщение осуществляется путем анализа данных о каком–либо одном объекте или ситуации с целью выявления существенных внутренних связей. Эти связи сразу фиксируются абстрактно (теоретически – с помощью слова, знаков, схем) и становятся той основой, на которой в дальнейшем выполняются частные (конкретные) действия.

Необходимое условие формирования у младших школьников способности к теоретическому обобщению – направленность обучения на формирование общих способов деятельности. Для выполнения этого условия нужно продумать такие действия с математическими объектами, в результате которых дети смогут сами «открывать» существенные свойства изучаемых понятий и общих способов действий с ними.

Разработка данного вопроса на методическом уровне представляет определенную сложность. В настоящее время – это одна из самых актуальных проблем начального обучения, решение которой связано как с изменением содержания, так и с изменением организации учебной деятельности младших школьников, направленной на его усвоение.

В курс начальной математики (В.В. Давыдов), целью которого является развитие у детей способности к теоретическому обобщению, внесены существенные изменения. Они касаются и его содержания, и способов организации деятельности. Основу теоретических обобщений в этом курсе составляют предметные действия с величинами (длина, объем), а также различные приемы моделирования этих действий с помощью геометрических фигур и символов. Это создает определенные условия для выполнения теоретических обобщений. Рассмотрим конкретную ситуацию, которая связана с формированием понятия «больше на». Учащимся предлагаются две банки. В одну (первую) налита вода, другая (вторая) – пустая. Учитель предлагает найти способ решения следующей проблемы: как сделать так, чтобы во второй банке воды было бы вот на этот стаканчик (показывает стаканчик с водой) больше, чем в первой? В результате обсуждения различных предложений делается вывод: нужно перелить воду из первой банки во вторую, т. е. налить во вторую столько же воды, сколько ее налито в первую банку, и затем вылить во вторую еще стаканчик воды. Созданная ситуация позволяет детям самим найти необходимый способ действия, а учителю сосредоточить внимание на существенном признаке понятия «больше на», т. е. нацелить учеников на овладение общим способом действия: «столько же и еще».

Использование величин для формирования у школьников обобщенных способов действий – один из возможных вариантов построения начального курса математики. Но эту же задачу можно решать, выполняя различные действия и с множествами предметов. Примеры таких ситуаций нашли отражение в статьях Г. Г. Микулиной[4].

Она советует для формирования понятия «больше на» использовать ситуацию с множествами предметов: детям предлагается пачка красных карточек. Нужно сложить пачку из зеленых карточек так, чтобы в ней было вот на столько (показывается пачка синих карточек) больше, чем в пачке красных. Условие: карточки пересчитывать нельзя.

Пользуясь способом установления взаимно–однозначного соответствия, учащиеся выкладывают в зеленой пачке столько же карточек, сколько их в красной, и добавляют к ней еще третью пачку (из синих карточек).

Наряду с эмпирическим и теоретическим обобщениями в курсе математики имеют место обобщения–соглашения. Примерами таких обобщений являются правила умножения на 1 и на 0, справедливые для любого числа. Их обычно сопровождают пояснениями:

«в математике договорились...», «в математике принято считать...».

• Задание 91. Используя содержание курса начальной математики, придумайте ситуации для теоретического и эмпирического обобщения при изучении какого–либо понятия, свойства или способа действия.


Информация о работе «Развитие младших школьников в процессе обучения математике»
Раздел: Педагогика
Количество знаков с пробелами: 58829
Количество таблиц: 4
Количество изображений: 5

Похожие работы

Скачать
113771
6
2

... , если оно вводится целенаправленно, осознанно, с учетом характера материала, сравниваемых объектов, возраста и уровня развития школьников. РАЗДЕЛ 2. ОПЫТНО-ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ПО ФОРМИРОВАНИЮ УМСТВЕННОГО ПРИЕМА СРАВНЕНИЯ У МЛАДШИХ ШКОЛЬНИКОВ В ПРОЦЕССЕ ИЗУЧЕНИЯ МАТЕМАТИКИ 2.1. Методика по развитию и формированию сравнения у младших школьников в процессе изучения математики ...

Скачать
100502
9
1

... проблемного характера, задания, связанные с классификацией, анализом и синтезом, опорные схемы. Всё это составляет приёмы познавательной деятельности учащихся. Глава 3. Приёмы активизации учащихся в процессе обучения математике в начальных классах при изучении нумерации многозначных чисел   3.1. Сущность приёмов активизации   Для того, чтобы добиться активности учащихся на уроке математике, ...

Скачать
159230
6
3

... школ с. Большая Малышка и Соколовской Кызылжарского района Северо-Казахстанской области в количестве 30 человек. Изучение роли межпредметных связей уроков русского языка с другими учебными предметами в начальной школе в развитии письменной речи младшего школьника потребовало экспериментального обоснования и проверки эффективности данного предположения. Опытно-экспериментальная работа включала ...

Скачать
47807
0
0

... и даже превратился в черту характера. ГЛАВА 2. ИЗУЧЕНИЕ ОПЫТА РАБОТЫ УЧИТЕЛЕЙ НАЧАЛЬНЫХ КЛАССОВ ПО ФОРМИРОВАНИЮ САМОКОНТРОЛЯ У МЛАДШИХ ШКОЛЬНИКОВ   2.1 Особенности формирования самоконтроля у младших школьников   Е.С. Рубинский в качестве путей обучения школьников самоконтролю предлагает «наглядный контроль со стороны учителя, взаимоконтроль учащихся и на этой основе - самоконтроль ...

0 комментариев


Наверх