1 класс
Учить соотносить два предмета, картинки по форме, величине, целевому назначению. Соотносить кружочки, счетные палочки. Сравнение проводить на однотипном материале, преимущественно по внешним признакам в одном направлении (отличие или сходство), завершать эмоциональной оценкой детей.
Сравнивая и классифицируя игрушки, знакомые предметы, учебные принадлежности, делать вывод о принадлежности их к общему родовому понятию. Учиться делать элементарный индуктивный вывод из сравнения двух несложных объектов вербального характера, несложных практических действий. Отвечать на ряд вопросов по общей теме.
Накапливать опыт определения и объяснения понятий через практический показ определяемого предмета, указание, описание. Выделять внешние признаки знакомых предметов, явлений. Для облегчения понимания определений использовать наглядность.
2-й классНачать выделение существенных и несущественных признаков предметов.
Сопоставлять на однотипном материале два предмета, картинки по количеству, форме, величине, цвету целевому назначению. Сопоставлять числа, геометрические фигуры. Различать существенные и несущественные признаки предметов и на этой основе находить сходство и отличие. Одновременное сравнение производить на основе конкретных признаков в одном направлении с помощью введения третьего, контрастного объекта. Определять последовательность сравнения, понимать его целенаправленность. Завершать эмоциональной и простейшей логической оценкой. На основе умений анализа, выделение главного, сравнения формировать умения элементарного эмпирического обобщения. Сравнивания и классифицируя знакомые однотипные предметы, изображения, подводить их под общее родовое понятие. Сравнение заканчивать элементарным выводом.
Выделять существенные признаки знакомых предметов.
3-й классТренироваться в разделении существенных и несущественных признаков предметов.
Сопоставлять и противопоставлять по конкретным признакам два предмета, геометрические фигуры, простые задачи, примеры и т. д. Учиться последовательности сравнения и его целенаправленности, завершать суждение простым логическим выводом.
На основе сопоставления и противопоставления двух несложных практических, наглядных объектов формулировать обобщения индуктивным путём. Анализируя и сравнивая практические действия и их результаты, делать выводы по данным критериям.
Выделять существенные и несущественные признаки предметов.
4-й классРазличать существенные и несущественные признаки несложных предметов.
Продолжить формирование умения сравнивать до качественной ступени, за которой идёт обобщение. Учиться полному сравнению с соблюдением его последовательности: определение объекта и цели сравнения; выделение основных признаков; установление отличия и (или) сходства; формулировка выводов. Сравнивать различную по характеру и целевому назначению информацию на основе существенных конкретных и общих признаков. Проводить одновременное, параллельное и отсроченное сравнение двух объектов с введением третьего, контрастного объекта и контробраза. Сопоставлять и противопоставлять явление и факты. Овладевать правилом-ориентиром сравнением.
ПРИЛОЖЕНИЕ В
РАЗНОУРОВНЕВЫЕ МАТЕМАТИЧЕСКИЕ УПРАЖНЕНИЯ ПО ФОРМИРОВАНИЮ ПРИЕМА СРАВНЕНИЯ
1.
2. Маленькие треугольники раскрась зеленым карандашом, а большие – красным:
3.
4.
А) 3, 6, 4, 5, 9, 7, 8;
Б) 6, 1, 7, 9, 4, 0, 3.
5. Среди данных чисел обведи наибольшее:
А) 2, 5, 8, 0, 6, 4;
Б) 7, 9, 3, 1, 5, 6.
6.
7. Расставь числа от большего к меньшему:
2, 1, 4, 7, 9, 2.
8. Зачеркни те числа, которые не являются двузначными. Наименьшее двузначное число обведи красным кружочком:
20, 18, 3, 123, 11,13, 4, 8, 24, 10, 35.
9. Сравни суммы в каждой строчке, не выполняя действия, и поставь знак сравнения:
45 + 24 … 24 + 45;
37 + 23 … 38 + 22;
17 + 26 … 25 + 17;
35 + 40 … 38 + 43.
10. Какой пример можно заменить примером на умножение?
А. 5 + 5 + 4 + 5;
Б. 16 – 2 – 2– 2;
В. 12 + 12 + 12 .
11. Найди выражение, значение которого равно значению 7 · 5:
А. 7 + 7 + 7 + 7 + 7;
Б. 7 + 5;
В. 7 · 4 + 4.
12. Сравнить:
4 + 4 + 4 + 4 + 4 … 4 · 5
8 + 8 + 8 + 8 + 8 … 8 · 4
5 + 3 · 5 + 5 + 5 … 5 · 4
13. Соедини 3 любых числа, чтобы их сумма равнялась 40:
10, 11, 12, 13, 14, 15, 16, 17, 18, 19.
14. найди и подчеркни числа, чтобы их сумма равнялась 40:
10, 11, 12, 13, 14, 15, 16, 17, 18, 19.
15. Найди и подчеркни все выражения с ответом 12:
32 – 20
6 + 6
8 + 5
16. Запиши данные числа в порядке
А. Убывания:
75, 18, 24, 31, 90, 52.
Б. Возрастания:
17, 45, 50, 84, 23, 31.
17. Вместо звёздочек поставь знаки “+” и “–” так, чтобы неравенства были верными:
А. 39 – 9 > 30 * 1
Б. 59 – 9 < 50 * 1
18. Вставь пропущенное число так, чтобы все записи стали верными:
53 + 31 = 90 –
62 + = 45 + 25
19. Какое число больше, чем сумма чисел 39 и 11 на 16?
20. Числа записаны в определённом порядке. Продолжи этот ряд:
2, 4, 6, 8, 10…
21. Запиши результаты примеров, не производя вычислений:
6 · 3 = 18 12 · 5 = 60 30 · 3 = 90
3 · 6 = … 5 · 12 = … 3 · 30 = …
22. Сравни величины:
9 дм … 80 см
4 дм 5 см … 54 см.
23. Обведи кружочками:
А) чётные числа:
20, 17, 12, 7, 2, 5, 6, 10, 1, 8, 13, 4, 9, 14, 16.
Б) те числа, которые делятся на 6 без остатка:
6, 13, 18, 22, 28, 30, 36, 44, 48, 54,60.
24. Вставь пропущенные числа:
395, … , … , … , … , 402.
25. В каждой строчке подчеркни наименьшее число:
676 и 639
799800 и 790999
26. Распредели названия единиц измерения в три столбика: Килограмм, квадратный дециметр, метр, грамм, центнер, дециметр, квадратный метр, сантиметр, тонна, миллиметр, квадратный сантиметр.
27. Среди данных обозначений выбери единицы измерения, связанные с движением, и запиши их в три столбика:
28. Укажи верные неравенства:
915 – 236 > 915 – 236 648 : 3 > 648 : 2
915 – 236 > 915 – 237 648 : 3 < 648 : 2
29. Среди данных выражений подчеркни уравнения:
В – 4 = 500 125 + 75 = 200 у + 18 = 948
85 – х > 70 159 – 104 = 155
ПРИЛОЖЕНИЕ Г
СТАТЬИ ПО ПРОБЛЕМЕ ИССЛЕДОВАНИЯ
Развитие умственного приема сравнения у младших школьников в процессе решения разноуровневых упражнений по математике
Буканова Н.А., студентка 41 – ЕДН
Руководитель Глузман Н.А.
В новой концепции образования приоритетными целями являются развивающие. Рассматривая развивающие возможности математики, в большей степени говорят о развитии логического мышления. И это не случайно: математика имеет широкие возможности для умственного развития учеников благодаря своей системе исключительной ясности и точности понятий выводов и формулировок. Ошибочным с точки зрения современной психологии и дидактики является утверждение о том, что овладение самим содержанием курса математики автоматически формирует мышление школьников. Необходимо специально учить умению мыслить, давать учащимся знания о содержании и последовательности умственных действий, обеспечивающих усвоение курса математики. Однако конкретной программы логических приемов мышления, которые должны быть сформированы при изучении данного предмета, пока нет. В результате работа над развитием логического мышления школьников идет без знания системы необходимых приемов, без знания их содержания последовательности формирования. Это приводит к тому, что большинство учащихся не овладевают основными приемами мышления даже в старших классах школы, а эти приемы необходимы уже младшим школьникам: без них не происходит полноценного усвоения материала.
К числу фактов, определивших выбор темы нашего исследования, относится также недостаточная научная разработанность данной проблемы. Анализируя подходы и концепции, сложившиеся в теории и практике умственного развития, следует отметить исследования, посвященные формированию содержательных обобщений у детей (В.В.Давыдов, В.П.Иржавцева В.А.Крутецкий, В.Н.Осинская, В.Ф.Паламарчук, Л.Я.Федченко, С.А.Фокина, В.П.Хмель,), развитию компонентов мышления, методикам формирования приемов умственной деятельности у школьников (Л.В.Занкова, Н.Б.Истоминой, Е.Н.Кабанова-Меллер, Н.Н.Поспелова, В.И.Решетникова, З.И.Слепкань, Н.Ф.Талызиной, М.Н.Шардакова), формированию алгоритмов, способов формирования мышления учащихся средней школы (В.М.Косатая, Л.Н.Ланда, И.С.Якиманская), но развитие и формирование отдельных умственных приемов в условиях дифференцированного обучения младших школьников еще не нашла своего места в содержании математики начальных классов.
Анализ учебников и программ начальной школы показывает, что прием сравнения необходим учащимся уже в первом классе. Вместе с тем, пишет Талызина Н.Ф., если его не сделать предметом специального усвоения младшими школьниками, то он оказывается не усвоенным большинством учащихся до конца учебного года, что значительно отражается на дальнейшей успеваемости в средних классах.
Изложенное выше обусловило выбор темы исследования «Формирование умственного приема сравнения у младших школьников в процессе решения дифференцированных упражнений по математике».
Исследованием роли сравнения в учебном процессе и разработкой методики формирования этого приема занимались многие психологи, дидакты, методисты–математики ( Г.И. Каганяк, Г.С, Костюк, В.Ф. Паламарчук, В.Н. Осинская, Н.Ф. Талызина, М.Н. Шардаков, П.М. Эрдниев и др.). В своих работах они выделяют сравнение как основу любой умственной деятельности. Так, Д.Н. Богоявленский, Н.А. Менчинская отмечают, что сравнение – обязательное условие всякой абстракции и всякого обобщения. Оно также необходимо при аналогии и классификации. К.Д. Ушинский неоднократно подчеркивал, что сравнение есть основа всякого понимания и всякого мышления.
Сравнение – это прием умственной деятельности учащихся, предполагающий установление сходства или различие между объектами изучения.
Сравнение предполагает умение учащихся выполнять следующие действия:
5) выделение свойств у объектов (понятий, отношений);
6) установление общих существенных свойств;
7) выделение основания для сравнения (одного из существенных свойств);
8) сопоставление объектов (понятий, отношений) по данному основанию.
При рассмотрении сущности приема сравнения нужно уметь определять способы, уровни сравнения,а также и требования предъявляемыми к правильному сравнению. Уровни приема сравнения следующие:
Частичное сравнение – установление только общего, сходного свойства (сопоставление) или только общего, отличительного (противопоставление) в однородных объектах с определенной целью. Полное сравнение – установление существенного общего (сопоставление) и несущественного отличительного (противопоставление) в однородных объектах с определенной целью.
Комплексное сравнение – сопоставление и противопоставление различных объектов или их элементарных частей по разнородным основаниям.
Сравнение можно осуществить различными способами (параллельно, последовательно, отсроченно). Параллельное сравнение – одновременное изучение взаимосвязанных понятий, теорем, задач, при изложении материала укрупненными блоками. Последовательное сравнение – новый объект сравнивается с раннее изученным. Отсроченное сравнение – сравнение объектов значительно удаленных по времени изучения.
Отметим также, что важным методическим приемом в формировании приема сравнения является составление сравнительных таблиц, схем. При выполнении можно отрабатывать все действия приема сравнения и способы его проведения. Например, сравнение может быть односторонним (неполным, по одному признаку) и многосторонним (полным по всем признакам); поверхностным и глубоким; непосредственным и опосредованным.
Формирование умения пользоваться этим приемом следует осуществлять поэтапно, в тесной связи с изучением конкретного содержания. Целесообразно, например, ориентироваться на такие этапы:
5. выделение признаков или свойств одного объекта;
6. установление сходства и различия между признаками двух объектов;
7. выявление сходства между признаками трех, четырех и более объектов.
Одна из задач, которая заложена в Государственном стандарте начального образования – ориентация системы образования на детскую личность, её развитие. Личностно-развивающая направленность образования невозможна без дифференциации обучения. Основное назначение дифференцированных заданий в том, чтобы, зная и учитывая индивидуальные отличия в учебных возможностях школьников, обеспечить для каждого из них оптимальный характер познавательной деятельности в процессе обучения. В процессе усвоения знаний и умений один ученик по своим способностям может работать на обязательном уровне подготовки, другой может достичь более высокого уровня, при этом и первый, и второй ученики могут при определённых условиях организации обучения продвинуться в учебе дальше. Приводим примеры возможной дифференциации обучения приёму сравнения.
К обязательному уровню усвоения мы отнесли упражнения, при выполнении которых школьники ориентируются на сходство и различие признаков. На этом этапе они должны осознать смысл сравнения, уметь объяснять термин «сравнение».
2. В чем сходство и различие:
6) выражений: 11–1 и 11+1; 3(5+6) и 5(6+3);
7) чисел: 10, 20, 30, 40,50; 55 и 555; 110 и 10;
8) равенств: 4 + 5 = 9 и 5 + 4 + 9; 3 × 8 = 24 и 8 × 3 = 24; 4 × (5 + 3) = 32 и 4 × 5 + 4 × 3 = 32; 2 × (7 ×10) = 210;
9) текстов задач: а) В первом ящике 7 кг картофеля, во втором ящике на 3 кг больше, чем в первом. Сколько килограммов картофеля во втором ящике? б) В первом ящике 7 кг картофеля, во втором ящике на 3 кг меньше. Сколько килограммов картофеля во втором ящике?
10) уравнений: 7 + х = 5 и х + 7 = 5; 10 – х = 6 и (7 + 3) – х = 6; 12 – х = 4 и (10 + 2) – х = 3 + 1;
При выполнении упражнений продвинутого уровня ученики должны выявить основания для сравнения, выполнять последовательное (в случае соподчинения объектов), параллельное (рядоположеность объектов), отсроченное (отдалённость связи объектов друг с другом) сравнение.
Реши задачи:
а) Четыре друга спускались с горы на санках. Игорь проехал дальше, чем Роман. Роман проехал меньше, чем Олег, но дальше чем Вадим. Кто проехал меньше всего.
б) Петя выше видит Кати, Катя выше Оли. Кто выше всех?
в) Сколько шаров необходимо положить на третьи весы, чтобы уравновесить их?
г) Зоя решила больше задач, чем Рита. Алла решила много задач. Кто из девочек решил меньше задач, чем Зоя?
§ Сравни свойства квадрата и прямоугольника.
§ Сравни примеры, найди общее и сформулируй правило:
1 – 0
2 – 1
3 – 2
4 – 3
(если из последующего числа вычесть предыдущее, то в результате получится 1)
На этапе выполнения упражнений углублённого уровня ученики самостоятельно используют прием сравнения для различных задач, без указаний: «сравни…, укажи признаки, в чем сходство и различие…».
§ Расположи числа в порядке убывания: 45, 34, 2, 17, 38, 3, 58.
§ Найди лишний ряд: 2 5 8 11 14
1 4 7 10 13
3 4 5 6 7
Какое число пропущено: 3 5 7 9
6 10 14 ?
Почему, когда мы складываем числа по строчкам или столбикам, получается одно и тоже число:
1 | 3 | 4 | 1 | 4 | 3 |
3 | 1 | 3 | 3 | 1 | 4 |
4 | 4 | 1 | 4 | 3 | 1 |
Сумма чисел в первом столбике равна 18. Как быстро можно найти сумму чисел, записанных во втором столбике:
3 13
4 14
5 15
Какой знак ( =, <, > ) пропущен: –7 * +6
Практически все рассмотренные выше математические упражнения могут освоить и выполнить учащиеся начальных классов, если учитель постоянно будет проводить соответствующую работу, начиная с 1 класса. В методическом плане использование приема сравнения помогает:
8. более глубоко осознать смысл того или иного математического понятия или способа действия;
9. научить младших школьников сознательно отделять существенные признаки от несущественных;
10. доступнее и нагляднее показывать логическую структуру математических суждений.
Список использованной литературы
1. Державний стандарт початкової загальної освіти. Затв. постановою Кабінету Міністрів України від 16.11.2000р. №1717// Поч. школа. – 2001. – № 1. – с. 28
2. Іванців М. Порівняння на уроках математики. // Початкова школа.– 1999.– № 1. – с. 19.
3. Истомина Н.Б. Методика обучения математике в начальных классах: Учеб. пособие для студ. сред. и высш. пед. учеб.заведений. – 2–е изд., испр. –М.: Академия, 1998.–288с.
4. Талызина Н.Ф. Педагогическая психология: Учеб. для студентов сред. пед. учеб. заведения. – М.: Академия, 1998. – 288 с.
... цель в первую очередь связана с определения качества усвоения учащимися учебного материала - уровня овладения знаниями, умениями и навыками, предусмотренными программой по математике. Во – вторых, конкретизация основной цели контроля связана с обучением школьников приемам взаимоконтроля и самоконтроля, формированием потребности в самоконтроле и взаимоконтроле. В – третьих, эта цель предполагает ...
... , взрослым: им хочется двигаться. Специальные исследования, проведенные в НИИ физиологии детей и подросток РАО, показали, что увеличение двигательной активности младших школьников в режиме продленного дня возможно только при организации системы физкультурно-оздоровительной работы. Такая система должна включать в себя ежедневно: Гимнастику до занятий (10 минут); Физкультминутки на каждом уроке и ...
... Е.И. Жизненная перспектива и профессиональное самоопределение. – Киев, 1988. Ковалева Олеся Ивановна Ставропольский государственный университет, г.Ставрополь КООНТОГЕНЕЗ ЛИЧНОСТИ ПОДРОСТКА В СРЕДЕ ОБЩЕОБРАЗОВАТЕЛЬНОЙ ШКОЛЫ Коонтогенез личности - взаимосогласованное развитие системы человеческого организма с окружающим его миром в опосредованно общей структуре связей при сохранении ...
... свидетельствует положительная динамика по тем параметрам, которые нами были определены. Разумеется, наше исследование не раскрывает всех сторон проблемы влияния личностно-ориентированного подхода на эффективность процесса обучения младших школьников, поэтому не является исчерпывающим. Перспективным направлением мы считаем обоснование влияния личностно-ориентированного подхода на другие качества ...
0 комментариев