2.1 Пошук шляхів вдосконалення методики формування вмінь молодших школярів розв’язувати текстові задачі

Навчальний процес – це складна динамічна система, у якій в органічній єдності відбувається взаємопов’язана діяльність вчителя і учня. Ця система стає ефективною, якщо вчитель знає індивідуальні відмінності в розвитку мислення школярів, оперативно враховує готовність дитини до опанування нового матеріалу, забезпечує для кожного учня оптимальний характер пізнавальної діяльності на всіх етапах навчальної роботи [25,17]. Те саме питання для одних учнів є складним, а для інших – легким. Тому вчитель, готуючись до уроку, повинен визначати не тільки його загальну навчально-пізнавальну мету, а й способи досягнення її кожним учнем. Щоб учень на уроці постійно був зайнятий виконанням посильного завдання слід, глибоко вивчивши індивідуально-психологічні відмінності вихованців, відповідно поєднувати фронтальні, індивідуально-групові та індивідуальні форми роботи. Велику допомогу тут подають диференційовані вправи. Основа диференціювання таких вправ може бути різна. Насамперед – це завдання для сильних, середніх і слабких учнів. Для слабких:

-         спрямовані на усунення прогалин у знаннях.

Для сильних:

-         на поглиблення або розширення знань чи розвиток їхньої математичної кмітливості,

-         вправи обов’язкові й бажані,

-         такі, що відповідають інтересам певних груп дітей;

-         однакові для всього класу за складністю, але різні за формою.

Всі ці завдання спрямовані на поєднання загального руху всього класу по шляху опанування знань з підтягуванням слабших і безупинним розвитком сильніших учнів. З цього і випливають загальні вимоги щодо організації диференційованого підходу до навчання, складання і використання відповідних завдань [81,19].

Відомо, що навчити дітей самостійно розв’язувати задачі – робота складна і відповідальна. Відомий вчений М.В. Богданович відзначає, що інтенсивність розвитку вмінь молодших школярів у розв’язуванні задач визначається передусім змістом задач і методами керування цим процесом. Формування навичок розв’язування простих арифметичних задач і розвиток умінь розв’язувати складені задачі на початковому етапі відбувається завдяки наслідуванню зразків і постійній практиці. Кожна задача, виконана з певною часткою власних зусиль, стає зразком для розв’язування інших.

Програма початкової школи вимагає розвитку самостійної роботи в дітей при розв’язуванні текстових задач. Кожен учень повинен вміти зробити короткий запис задачі за допомогою ілюстрацій, схеми чи графічно. Хоча на практиці ці вимоги виконуються далеко не повністю, що приводить до серйозних проблем в знаннях і навичках учнів [46,33].

З огляду на це методи навчання математики і вироблення вмінь в учнів мають бути спрямовані на перенесення здобутих результатів на нові об’єкти, нові задачі, в нові умови, на порівняння схожих чи взаємопов’язаних між собою задач. Основними компонентами даної системи виступають: розв’язування задач різними способами, зміна елементів задачі (числових даних, питання, відношень між величинами, сюжету), складання задач (на вказану дію, на виразом, за планом розв’язування, з заданими величинами, певного виду, …), складання обернених задач з недостатніми та із зайвими даними, розв’язування задач підвищеної складності, цікавих задач [83,21].

Процес формування вмінь учнів початкової школи розв’язувати текстові задачі має бути диференційованим. Основою впровадження диференційованого підходу до формування вмінь розв’язувати текстові задачі та організації навчального процесу (відбору методів, прийомів, засобів і організаційних форм) є дидактичні принципи розвивального навчання: науковості, доступності, послідовності, наступності, міцності і дієвості, свідомості й активності, наочності, адаптивно високого рівня складності матеріалу [8,87].

Практика показала, що для диференційованого формування вмінь розв’язувати задачі достатньо виділити три групи учнів (учні із високими, середніми і низькими математичними здібностями). При цьому доцільно враховувати рівні навченості, розвитку розумових дій, самостійності під час роботи. Поділ учнів на групи є орієнтовний і може змінюватися у процесі навчання.

В класі здебільшого можна виділити три групи. Перша – найсильніша. До неї належать ті школярі, які самостійно або ж після незначної підготовчої роботи можуть розв’язувати текстові задачі. До другої – діти, з якими достатньо докладно розібрати 2-3 задачі розглядуваного виду, після чого вони самостійно працюватимуть за аналогією. Третя група складається з найслабших учнів, котрим необхідна не лише тривала підготовка, а й значна допомога в розв’язуванні задач. Зрозуміло, що цей поділ умовний. Він може з часом змінюватися як за складом учнів, так і за кількістю груп (замість трьох – дві). Однак це дає можливість більш цілеспрямовано й ефективно добирати методику на кожному етапі опрацювання задачі.

Вже підготовчий етап треба диференціювати щодо кожної групи учнів: першій запропонувати самостійну роботу над простими чи навіть складеними задачами, потрібними для осмислення способу розв’язування нової; другій – дати аналогічні завдання, але з допоміжними запитаннями – орієнтирами (записати на звороті карток або окремо); з третьою групою в цей час попрацювати фронтально, ґрунтовно розібравши завдання.

Іноді в 3 – 4 – му класах задачі диференціюють так: сильнішим учням учитель пропонує коротко записати умову задачі й розв’язати її, при цьому буває, що умова задачі являє собою тільки сюжет, а учні самі визначають потрібні дані. Слабкішим дітям треба скласти таку саму задачу за готовою таблицею і розв’язати її або скласти іншу за схемою, коротким записом, частково виконаним розв’язуванням.

Диференціація вироблення вмінь розв’язувати текстові задачі передбачає виділення трьох рівнів математичної підготовки школярів: мінімально-базового, базового, підвищеного. Характеристика рівнів визначалася змістом курсу (обсягом теоретичних знань, переліком умінь і відповідних задач), врахуванням специфіки навчальної діяльності учнів [85,7].

На мінімально-базовому рівні учні мають розв’язувати задачі обов’язкового мінімуму, визначеного програмою з математики. Це текстові задачі певного типу, без оволодіння вміннями розв’язувати яких неможливе навчання математики у наступних класах. На цьому рівні доцільно використовувати пояснювально-ілюстративні методи, прийоми емоційного стимулювання; більшої ваги набуває наочність. Учням пропонуються задачі репродуктивного характеру, нескладні творчі завдання; обсяг їх самостійності незначний: переважає розв’язання задач за зразком, реконструктивна робота. На цьому рівні учні повинні знати структуру задачі, вміти виділяти умову, вимогу, відомі й шукані величини, встановлювати залежності між ними.

На базовому рівні учні повинні розв’язувати задачі середньої складності. Це задачі з більш складними обчисленнями і логічними перетвореннями, задачі, що утворені шляхом комбінації задач обов’язкового мінімуму і містять одну чи дві новозасвоєні дії. Розв’язування цих задач потребує від школярів продуктивної розумової діяльності. На цьому рівні навчання переважають конструктивні і варіативні самостійні роботи, збільшення кількості задач, які потребують від учнів ретельного аналізу задачної ситуації. Учні, які досягли цього рівня, повинні володіти загальними знаннями про текстову задачу і вміти пояснювати причини неповноти або неправильності її побудови, самостійно складати нескладні текстові задачі.

Підвищений рівень математичної підготовки характеризується вміннями розв’язувати текстові задачі підвищеної складності, із логічним навантаженням, з елементами випереджувального навчання. Ці задачі характеризуються збільшенням кількості логічних операцій, нестандартними фабулою і способом розв’язання. Вироблення вмінь спрямоване на інтенсивну самостійну діяльність – самостійні пошуки нової інформації, дослідження цікавих і оригінальних способів розв’язування тощо. Окрім загальних знань про задачу, учні мають знати додаткові характеристики її складових. На основі цього вони самі мають складати різні текстові задачі та завдання творчого характеру.

Зазначимо, що мінімально-базовий рівень забезпечує вивчення математики у наступних класах. Інші рівні (базовий і підвищений) враховують мінімально-базовий і містять задачі середньої та підвищеної складності. Перехід школярів на вищий рівень навчання відбувається після засвоєння попереднього.

Засобом формування вмінь розв’язувати текстові задачі є система диференційованих завдань. Встановлено, що вона має включати підготовчі, пробні, тренувальні, творчі, перевірочні завдання.

Розглянемо деякі аспекти методики роботи над текстовими задачами.

На етапі закріплення вміння розв’язувати задачі певного виду самостійну роботу учнів можна організувати так, як показано в схемі 1 [23,17].

Схема 1.

 І варіант  ІІ варіант

Колективний аналіз задачі з підручника

Самостійний запис у зошитах

розв’язаної задачі

Колективний аналіз подібної

задачі (змінено тільки числові

дані). Запис розв’язання з

коментуванням

Самостійне розв’язання

подібної задачі

Колективний аналіз подібної

задачі (змінено сюжет попередньої задачі)

Творче завдання Самостійне розв’язання подібної задачі (змінено числові дані та сюжет)

Під час колективного аналізу задачі (І етап) усно складається план її розв’язання. На планшетах учні коротко записують розв’язок і показують учителю. Хто правильно зробить записи, виконує завдання І варіанта, хто помилився – працює з учителем над завданнями ІІ варіанта. Цифри, що показують номери варіантів, записано різними кольорами. Школярі виставляють на підставку сигнальні картки відповідного кольору.

Іноді буває так, що після самостійного читання умови задачі частина учнів вже знає розв’язок. Тому для І варіанта відразу даються самостійні завдання з поступовим ускладненням, а для ІІ – вчитель добирає задачі з поступовим підходом до самостійності.

На наступних етапах (ІІ – IV) роботу можна організувати, наприклад, у такий спосіб.

ІІ етап

І в. Самостійно запиши в зошитах розв’язок задачі за допомогою дій з поясненням.

В магазин привезли 7 ящиків яблук по 6 кг у кожному і 5 ящиків груш по 7 кг у кожному. Скільки кілограмів фруктів привезли до магазину?

ІІ в. Аналіз подібної задачі (змінено тільки числові дані, щоб полегшити сприймання сюжету задачі). Розв’язок запиши з коментуванням.

 

Задача

Назва продукту Маса 1 ящика Кількість ящиків

Яблука

груші

7

4

9

8

Слухають усі. Перевірка всіх завдань.

ІІІ етап

І в. Самостійно розв’яжи задачу (змінено сюжет і числові дані).

У магазин привезли іграшки в пакетах: 80 кубиків по 10 штук у пакеті і 50 м’ячів по 5 у пакеті. Скільки всього пакетів з іграшками привезли в магазин?

ІІ в. Фронтальна робота. Аналіз подібної задачі (змінено сюжет попередньої задачі) і самостійний запис розв’язування.

Для вчителів побудували 8 будинків по 3 квартири і 7 будинків по 10 квартир. Скільки всього квартир побудували для вчителів?

Слухають усі. Перевірка всіх завдань.

IV етап

І в. Склади задачу за схемою і запитанням (можна запропонувати таблицю «Магазин»).


Информация о работе «Диференційований підхід у процесі навчання молодших школярів розв’язувати текстові задачі»
Раздел: Педагогика
Количество знаков с пробелами: 134103
Количество таблиц: 24
Количество изображений: 14

Похожие работы

Скачать
126422
3
9

... правильність результатів; показувати, до яких негативних результатів можуть привести допущені в розв'язанні задачі помилки. Розглянемо прийоми перевірки правильності розв'язування задач та питання методики формування у молодших школярі" уміння застосовувати їх. У 1-4 класах доцільно поступово запроваджувати такі прийоми перевірки; порівняння результату, який дістати учні в процесі розв'язання ...

Скачать
136667
5
2

... школярів математичних уявлень і понять. Усвідомлення їх є важливим як для практично-життєвої підготовки учнів, так і для подальшого засвоєння математичних знань у середніх класах. 1.2 Проблема формування вмінь у другокласників розв’язувати складені задачі Традиційно ознайомлення з поняттям “складена задача” здійснюється в 2-му класі на задачах на знаходження остачі, й ці задачі пропонуються ...

Скачать
128328
9
13

... робити схеми аналітичного або синтетичного способу розбору задач, хоча це не належить до обов'язкових умінь, наведених у програмі з математики для 1–4 класів. 2. Формування умінь учнів розв’язувати задачі на рух   2.1 Аналіз системи задач на рух у початковому курсі математики Вивчення всіх питань програми з математики пов'язане з розв'язуванням арифметичних задач. З одного боку, вони є ...

Скачать
105863
15
6

... -наслідкові зв’язки, зробити узагальнення і висновки. Результати формуючого експерименту свідчать, що використання удосконаленої методики позитивно вплинуло на розвиток умінь і навичок учнів експериментального класу розв'язувати задачі на пропорційне ділення. Таким чином, ми отримали результати, що підтвердили наше припущення: уміння і навички учнів експериментального класу розв’язувати задачі на ...

0 комментариев


Наверх