2.3 Гипотеза: эволюционная роль системы МГЭ в геномах эукариот

Суммируя вышеизложенное, можно констатировать, что система МГЭ эукариотического генома обладает, по крайней мере, следующими общими функциями: 1) является источником инсерционной изменчивости генов; 2) влияет на проявление количественных и качественных признаков; 3) откликается изменением рисунков локализации многих МГЭ на отбор по признакам; 4) откликается на внешние стрессорные воздействия, в частности — температурные, вспышками транспозиционной изменчивости. Такими свойствами в разной степени обладают МГЭ различных объектов — дрожжей, дрозофилы, растений, млекопитающих.

Механизм инсерционной изменчивости достаточно ясен. Отметим только, что активация транспозиций разными путями (дисгенное скрещивание а Р—М системе (МсКау, 1988), температурное воздействие в системе copia-подобных МГЭ должна усиливать эти компоненты изменчивости. Укажем также на существование "транспозиционных взрывов" в отдельных генеративных клетках дрозофилы, возникающих после генетического воздействия или спонтанно.

Механизм влияния МГЭ на экспрессию генов эукариот требует пояснений. В целом МГЭ содержат широкое разнообразие регуляторных сайтов, среди которых наиболее интересны энхансеры и регуляторные сайты теплового шока. Известно, что энхансеры способны в десятки и сотни раз усиливать транскрипцию соседних генов на расстоянии до 5000 н.п. методом контекстного анализа показали, что в структуре многих МГЭ (в том числе — mdg-1, mdg-2, mdg-4, copia) имеются энхансеро-подобные сайты.

Регуляторные сайты теплового шока (РСТШ) присутствуют в 5'-областях перед началом транскрипции эукариотичкеских генов, проявляющих эффект теплового шока. Размер их ~14 н.п., расстояние до блока Хогнесса sS 200 н.п. Восстановлен консенсус РСТШ, характерный для таких далеких форм, как дрожжи, дрозофила, лягушка, человек: CNNGAANNTTCNNG (N—любой нуклеотид). Здесь 8 консервативных позиций. В некоторых случаях РСТШ имеют другую структуру. Чем ближе РСТШ к блоку Хогнесса, тем эффективнее активация транскрипции тепловым шоком (Bienc, 1985). РСТШ можно рассматривать как энхансеры с позитивной регуляцией.

Показано, что активация транскрипции МГЭ copia у дрозофилы и DIRS1 у дрожжей при тепловом шоке связана с наличием РСТШ в их терминальных повторах). Капитонов и др. (1987) методом контекстного анализа обнаружили РСТШ-подобные сайты в семи из 13 исследованных ими МГЭ: mdg-1, mdg-4, hobo, P дрозофилы, BS1 и CIN1 кукурузы и в ретровирусе EV1 курицы. Все они находились на расстоянии ^ 150 н.п. от начала транскрипции и имели неслучайную гомологию либо с известными РСТШ, либо с их консенсусом. В mdg-2 и в МГЭ H.M.S. Beagle дрозофилы этот вариант РСТШ не обнаружен, но это не исключает возможного присутствия других РСТШ. Сходные результаты независимо получены также Макдональдом и сотрудниками. Интересно, что РСТШ найден также в последовательности секвенированного ретровируса HTLV—III (вирус СПИД). В некоторых МГЭ найдены РТСШ-подобные сайты на расстоянии > 200 н.п. от блока Хогнеса. Отметим, однако, что наличие РТСШ-подобного сайта еще не гарантирует его функционирование.

Прямое доказательство индукции транспозиций copia-подобного МГЭ mdg-2 при помощи теплового шока получено Колесниковой и др. (1991). В изогенной линии, самцы которой были подвергнуты тепловому шоку, транспозиции были найдены в следующем поколении, причем вероятности транспозиций возросли более чем на два порядка величин.

Таким образом, появление дополнительного энхансера вблизи функционального гена в результате инсерции несущего его МГЭ способно резко активизировать этот ген. Инсерция МГЭ, содержащего РСТШ, способна подчинить соседние гены системе теплового шока и сделать их чувствительными к стрессорным факторам окружения. В связи с этим можно сформулировать гипотезу о роли МГЭ в ответе на отбор по признакам и в температурных эффектах.

На основе имеющихся фактов (см. выше) необходимо постулировать, что рисунки локализации МГЭ являются существенной компонентой генетического механизма детерминации количественных признаков (Vasilyeva et al., 1985; Ratner, Vasilyeva, 1989). В общем случае эти системы содержат: 1) олигогены (гены главного эффекта), необходимые для формирования признака; 2) полигены, каждый из которых не необходим для формирования признака, но в совокупности они могут существенно изменить его экспрессию; 3) МГЭ, которые модифицируют, усиливают действие олигогенов и полигенов, вблизи которых они локализованы. Рисунок локализации МГЭ в каждом случае относительно стабилен; позиции, доступные для инсерции, вероятно, мечены на длительный срок "молекулярной памятью", существование которой в частном случае показано Мизрохи и др. (1985); возможно, что список доступных позиций зависит от компактизации хромосом и других явлений ядерно-хромосомного уровня. Рисунок локализации МГЭ распределяется по этим специфическим позициям (см. параметры n и m в п. 2). Скорее всего, рисунок МГЭ более или менее случайно наложен на топографию локализации олигогенов и полигенов и активирует их.

В рамках концепции лимитирующих факторов необходимо также предположить, что влияние как полигенов, так и МГЭ проявляется фенотипически только в тех случаях если они действуют на лимитирующие олигогены. Тогда их эффект оценивается отбором: вариабельность рисунков будет создавать вариабельность лимитирующих признаков, отбор по признакам будет приводить к отбору полигенов и рисунков модифицирующих их МГЭ. Определенный вклад в изменчивость признаков будут вносить также новые редкие транспозиции МГЭ. Ясно, однако, что селективное изменение рисунков не будет равномерным, поскольку это не нейтральный процесс фиксации перемещений МГЭ.

Для объяснения температурных эффектов предполагается, что стрессовое температурное воздействие (тепловой шок, ступенчатое изменение температуры и др.) индуцирует вспышку множественных у отдельных особей и массовых в популяции транспозиций МГЭ, которые выявляются уже в следующем поколении (Колесникова и др., 1991) и приводят к наследуемому изменению количественных и качественных признаков. Неслучайный характер температурно-индуцированных транспозиций можно связать с существованием каких-то достаточно жестких ограничений на локализацию этих транспозиций в геноме. Имеется в виду, что в рамках группы выделенных сайтов, в принципе доступных для инсерций МГЭ, т.е. обладающих гомологией к ним, имеются дополнительные ограничения на транспозиции, связанные со свойствами хромосом или клеточного ядра и изменяющиеся в ходе онтогенеза. Эти ограничения должны быть различны на разных этапах онтогенеза (в чувствительные периоды). Сходство фенотипов "селекционных" и "температурных" линий сопровождается сходством спектров перемещения МГЭ. Это возможно только в том случае, если спонтанные неиндуцированные транспозиции в "селекционных" линиях подчиняются таким же ограничениям, что и индуцированные в "температурных" линиях.

Последствия температурных воздействий могут быть весьма разнообразны. Непосредственная активация системы генов, подчиненных РСТШ, по-видимому, должна привести к усилению транскрипции и синтеза ферментов транспозиции (транспозаз, ревертаз и др.) и к увеличению вероятности транспозиции. В свою очередь, это вызовет вспышку инсерционного мутагенеза. Наличие энхансеров в структуре МГЭ приводит к заметной активации олигогенов и полигенов, в окрестность которых совершаются транспозиции. Иначе говоря, возможно массовое и множественное изменение экспрессии различных генетических систем. Кроме того, повышение синтеза ревертазы может усилить процесс амплификации различных генов через прямую и обратную транскрипцию.

Следует подчеркнуть, что система теплового шока индуцируется не только повышением температуры, но и воздействиями других весьма разнообразных внешних факторов: вирусным заражением клеток, обработкой ядами, детергентами, другими химическими факторами, нарушением энергетического обмена клеток и т.д. Все эти воздействия являются стрессовыми, неблагоприятными, а реакция системы теплового шока — генерализованной. Кроме того, уровень транскрипции и транспозиций некоторых МГЭ индуцируются УФ- и гамма-облучением, а в Р—М и I—R-системах дрозофилы — дисгенным скрещиванием.

Геномы эукариот, содержащие до 10% МГЭ различных семейств, теперь можно рассматривать как систему разнообразных паттернов МГЭ, которая может быстро перестраиваться под влиянием стрессовых внешних и геномных воздействий. В разных случаях транспозиции могут быть как случайными, так и жестко канализованными по своим локализациям, но они порождают новый вариант изменчивости для полигенных систем. В этом смысле МГЭ можно рассматривать как своеобразные рецепторы стрессирующих сигналов из внешней или генетической среды, "запускающие" системные вспышки наследуемой изменчивости в критические периоды эволюции популяций. Это влечет за собой множественные генетические последствия: быстрое изменение видовой нормы лимитирующих признаков, возможно, изменение лимитирования, изменение спектра дальнейших мутаций и перестроек, становление нового генетического гомеостаза и др. Участие в этих событиях ретропозонов (mdg и др.) означает, что их собственный генетический материал при репликации проходит РНК-стадию, которая имеет вероятность мутирования 10-3—10-4, что на несколько порядков выше, чем в ДНК-содержащих геномах эукариот. Таким образом, гены и функциональные сайты самих ретропозонов подвержены особо сильному мутагенезу. Этоа касается также генов, захваченных ретропозонами из генома хозяина. Критические, стрессовые условия существования часто сопряжены с прохождением популяций через стадию "бутылочного горлышка", которое может быть связано либо с массовым вымиранием; либо с освоением новых экологических ниш по "принципу основателя". В этих условиях новые формы, индуцированные через вспышки транспозиций, могут стать основателями новых популяций с резко измененным фенотипом по лимитирующим количественным или качественным признакам. Здесь возможны как адаптивные, так и случайные варианты быстрого преобразования. В результате фактически эти события могут стать одной из главных компонент изменчивости и эволюции генома дрозофил и других объектов. Не исключено, что изменение системы рисунков локализации МГЭ является одним из механизмов видообразования. Во всяком случае, гибридный дисгенез, индуцирующий транспозиции Р-фактора, является изолирующим механизмом между скрещиваемыми линиями дрозофил.


Информация о работе «Эволюция генома»
Раздел: Биология
Количество знаков с пробелами: 62317
Количество таблиц: 4
Количество изображений: 0

Похожие работы

Скачать
23609
0
0

... генов, но и создавала предпосылки для накопления в них изменений, дивергенции генов, увеличения разнообразия контролируемых ими продуктов.   2. Подвижные генетические элементы   Определенная роль в эволюции геномов как про-, так и эукариотических клеток принадлежит так называемым подвижным генетическим элементам - транспозонам. Они представляют собой автономные единицы, несущие в нуклеотидной ...

Скачать
35376
0
0

... генов или в поддержании структуры хромосом, вообще не нуждаются в транскрибировании, для того чтобы выполнять свою функцию. Гены, белки и "молекулярные часы" В большей части работ по молекулярной эволюции главное внимание уделялось изменениям структурных генов, выражающимся в изменениях последовательности аминокислот в кодируемых ими белках. Большое число аминокислотных последовательностей ...

Скачать
28505
0
1

... Подвижные генетические элементы обычно рассеяны по геному, но могут концентрироваться в отдельных участках хромосом. Виды мобильных элементов эукариот Различают два (по признаку молекулярных механизмов перемещения) основных класса подвижных генетических элементов: 1. Транспозоны Эти элементы ограничены инвертированными повторами (последовательностями, направленными навстречу друг другу), как ...

Скачать
43264
1
0

... . При этом возникает целый ряд этических проблем, в них мы не будем здесь углубляться. Самым существенными вопросами при рассмотрении видов материи как уровней единой термодинамической системы и термодинамических соотношений на каждом уровне являются вопросы о диапазоне физических параметров, в которых реализуется структурирование элементов уровня, и виде “экологических отходов” функционирования ...

0 комментариев


Наверх