Расчет силы магнитного поля на ферромагнитное основание методами программной системы конечно-элементного анализа ANSYS

Исследование магнитных систем в программной системе конечно-элементного анализа ANSYS
58731
знак
18
таблиц
33
изображения

3.1.3 Расчет силы магнитного поля на ферромагнитное основание методами программной системы конечно-элементного анализа ANSYS

Программная система конечно-элементного анализа ANSYS рассчитывает дискретные модели. Для вычисления силы на тело необходимо, чтобы оно было окружено хотя бы одним слоем “воздушных” элементов. Это необходимо для метода виртуальной работы при элементарном перемещении объекта на который вычисляется сила в постоянном магнитном поле. Это означает, что программа не вычисляет силу при нулевом зазоре. В качестве минимального значения зазора принят 0,1 мм.

Таблица 3.3. Зависимость силы магнитного поля, действующей на верхний магнит от воздушного зазора между магнитом и основанием.

Воздушный зазор, мм. Метод расчета силы с помощью виртуальной работы, N Метод расчета силы с помощью тензора напряжений Максвелла
1 0,1 693,88 693,81
2 0,2 575,27 575,16
3 0,3 488,55 488,4
4 0,4 421,83 421,79
5 0,5 368,85 368,81
6 0,6 325,76 325,71
7 0,7 290,07 290,01
8 0,8 260,07 260,01
9 0,9 334,57 234,51
10 1 212,64 212,58
11 2 5,31 95,24
12 3 51,11 51,04
13 4 30,1 30,04
14 5 18,87 18,81

3.1.4 Исследование сходимости методов расчета силы магнитного поля в зависимости от количества элементов воздушного зазора между магнитным держателем и основанием

Важно отметить, что точность вычислений силы магнитного поля на ферромагнитное основание зависит от числа элементов по длине воздушного зазора, и от самой длины воздушного зозора. В этом месте модели происходят скачки свойств материалов: постоянный магнит – воздух – ферромагнитный материал. Чтобы получить погрешность мене 1% относительно последнего результата расчетов силы по тензору Максвелла, число элементов по кратчайшему расстоянию между магнитом и объектом, на который вычисляется сила, должно быть не менее четырех, а для метода виртуальной работы достаточно двух. Это справедливо для зазора, соизмеримого с размерами магнитной системы. Для минимального зазора, рассматриваемого в данной задаче, 0.1 мм, для метода расчетов силы по тензору Максвелла с погрешностью 1% достаточно двух элементов по длине воздушного слоя, для метода виртуальной работы достаточно и 1 элемента. Эти данные справедливы только для геометрии рассматриваемой модели, и их не рекомендуется обобщать на другие расчетные модели.

Таблица 3.4 Зависимость силы магнитного поля, действующей на основание, от количества элементов по длине воздушного зазора между магнитом и основанием. Длинна воздушного зазора 5 мм.

5 mm
Количество элементов по длине воздушного зазора, шт. Метод расчета силы с помощью виртуальной работы, N Метод расчета силы с помощью тензора напряжений Максвелла, N Отклонение текущего значения к последнему (метод виртуальной работы) % Отклонение текущего значения к последнему (Метод расчета с помощью тензора Максвелла) %
1 17,967 11,621 4,765186 38,2256
2 18,846 17,903 0,106011 4,832022
3 18,842 18,45 0,127213 1,924304
4 18,849 18,631 0,090109 0,962152
8 18,866 18,812

Graph8.BMP

Рис. 3.8. Зависимость величины удерживающей силы от разбиения воздушного зазора, зазор 5мм.

Graph10.BMP

Рис.3.9 Отклонение текущей величины удерживающей силы от последней величины в зависимости от количества элементов по длине воздушного зазора, зазор 5мм.


Таблица 3.4 Зависимость силы магнитного поля, действующей на основание, от количества элементов по длине воздушного зазора между магнитом и основанием. Длина воздушного зазора 0,1 мм.

0,1 mm
Количество элементов по длине воздушного зазора, шт. Метод расчета силы с помощью виртуальной работы, N Метод расчета силы с помощью тензора напряжений Максвелла, N Отклонение текущего значения к последнему (метод виртуальной работы) Отклонение текущего значения к последнему (Метод расчета с помощью тензора Максвелла) %
1 694,37 692,99 -0,0735 0,122507
2 693,95 693,66 -0,01297 0,025943
3 693,9 693,77 -0,00576 0,010089
4 693,88 693,81 -0,00288 0,004324
8 693,86 693,84

Graph5.BMP

Рис. 3.10. Зависимость величины удерживающей силы от разбиения воздушного зазора, зазор 0,1мм.


Graph7.BMP

Рис.3.11 Отклонение текущей величины удерживающей силы от последней величины в зависимости от количества элементов по длине воздушного зазора, зазор 0,1 мм.


Информация о работе «Исследование магнитных систем в программной системе конечно-элементного анализа ANSYS»
Раздел: Информатика, программирование
Количество знаков с пробелами: 58731
Количество таблиц: 18
Количество изображений: 33

Похожие работы

Скачать
47503
2
14

... задачи, а именно: 1. Создана расчетная схема анализа на основании сравнительного анализа численных методов, а также программных и технических средств их осуществления; 2. Создан выбор метода автоматизированного анализа объекта проектирования; 3. Спланирован и проведен эксперимент, анализируя результаты которого, приходим к выводу, что данная модель может использоваться с параметрами: r = 5 R = ...

Скачать
344008
16
23

... назначение, содержание и описание функциональных характеристик, субхарактеристик и атрибутов, определяющих специфические особенности целей, задач, свойств и сферы применения конкретного программного средства – его функциональную пригодность; ·           конструктивные характеристики качества, способствующие улучшению и совершенствованию назначения, функций и возможностей применения ПС; ...

Скачать
43314
0
4

... являются Лоцман:PLM компании Аскон, PDM STEP Suite, разработанная под НПО "Прикладная логистика", Party Plus компании Лоция-Софт и т.д. Итак, термин САПР (система автоматизации проектирования) подразумевает комплексный подход к разработке изделия и включает совокупность систем CAD/CAM/CAE. Развитие систем геометрического моделирования, анализа и расчета характеристик изделия сопровождается ...

Скачать
308601
37
3

... производительных сил, тем быстрее повышается Б. населения. В еще большей степени Б. связано с эффективностью социально-экономической политики в данном обществе. Информатика как наука. Предмет и объект прикладной информатики. Системы счисления Инфоpматика — это основанная на использовании компьютерной техники дисциплина, изучающая структуру и общие свойства информации, а также закономерности и ...

0 комментариев


Наверх