4 x1 + x2 + x3+2x4 + x5 =8;

2x1 - x2 +x4=2;

x1 + x2+x5=3

L= -6x1+ x3 -x4 -x5 → max

Пусть x2, x4 – свободные переменные, а x1, x3, x5 - базисные переменные. Приведем систему и целевую функцию к стандартному виду, для построения симплекс-таблицы:

x5 =2-(1,5x2 -0,5 x4);

x3 =6-(1,5x2 +0,5 x4);

x1=1-(-0,5x2+0,5x4)

L=-2-(3x2- x4) → max

Составим симплекс-таблицу:

Выберем разрешающим столбцом x4,т.к. только перед этой переменной в целевой функции отрицательное число, выберем в качестве разрешающего элемента тот, для которого отношение к нему свободного члена будет минимально (это x1). Меняем x4 и x1

b

x2 x4
L

-2

2

3

-1

-1

2

x1

1

2

-0,5

-1

0,5

2

1/0,5=2

6

-1

1,5

0,5

0,5

-1

6/0,5=12

2

1

1,5

-0,5

-0,5

1

b

x2 x1
L 0 2 2
x4 2 -1 2

5 2 -1

3 1 1

Получили оптимальное решение, т.к. все коэффициенты положительны.

Итак, x1= x2=0, x3 =5, x4=2, x5 =3, L=0.

Ответ: x1= x2=0, x3 =5, x4=2, x5 =3, L=0.


Задача 3 (№8)

Условие:

Решение транспортной задачи:

1. Записать условия задачи в матричной форме.

2. Определить опорный план задачи.

3. Определить оптимальный план задачи.

4. Проверить решение задачи методом потенциалов.

№вар. а1 а2 а3 b1 b2 b3 b4 b5 с11 с12 с13
8 200 200 600 200 300 200 100 200 25 21 20
с14 с15 с21 с22 с23 с24 с25 с31 с32 с33 с34 с35
50 18 15 30 32 25 40 23 40 10 12 21

Решение:

Составим таблицу транспортной задачи. Заполним таблицу методом северо-западного угла:

B1 B2 B3 B4 B5 ai
A1

25

200

21 20 50 18 200
A2 15

30

200

32 25 40 200
A3 23

40

100

10

200

12

100

21

200

600
bj 200 300 200 100 200 1000

Количество заполненных ячеек r=m+n-1=6.

Проверим сумму по столбцам, сумму по строкам и количество базисных (заполненных) клеток:

r =6, å ai=å bj=1000, всё выполняется, значит, найденный план является опорным.

L=25*200+30*200+40*100+10*200+12*100+21*200=22400

Постараемся улучшить план перевозок.

1)         Рассмотрим цикл (1;1)-(1;2)-(2;2)-(2;1)

Подсчитаем цену цикла: j=15-30+21-25=-19<0

B1 B2 B3 B4 B5 ai
A1 25

21

200

20 50 18 200
A2

15

200

30 32 25 40 200
A3 23

40

100

10

200

12

100

21

200

600
bj 200 300 200 100 200 1000

L=21*200+15*200+40*100+10*200+12*100+21*200=18600

2)         Рассмотрим цикл (2;1)-(2;2)-(3;2)-(3;1)

j=-15+30+23-40=-2<0

B1 B2 B3 B4 B5 ai
A1 25

21

200

20 50 18 200
A2

15

100

30

100

32 25 40 200
A3

23

100

40

10

200

12

100

21

200

600
bj 200 300 200 100 200 1000

L=21*200+15*100+30*100+23*100+10*200+12*100+21*200=18400

Проверим методом потенциалов:

Примем α1=0, тогда βj = cij – αi (для заполненных клеток).

Если решение верное, то во всех пустых клетках таблицы Δij = cij – (αi+ βj) ≥ 0

Очевидно, что Δij =0 для заполненных клеток.

В результате получим следующую таблицу:

B1=6 B2=21 B3=-7 B4=-5 B5=4 ai
A1=0 25-6>0

21-21=0

200

20+7>0 50+5>0 18-4>0 200
A2=9

15-9-6=0

100

30-21-9=0

100

32-9+7>0 25+5-9>0 40-4-9>0 200
A3=17

23-17-6=0

100

40-21-17>0

10+7-17=0

200

12+5-17=0

100

21-4-17=0

200

600
bj 200 300 200 100 200 1000

Таким образом, решение верное, т.к. Δij > 0 для всех пустых клеток и Δij =0 для всех заполненных.

Тогда сумма всех перевозок:

L=18400

Ответ:

B1 B2 B3 B4 B5 ai
A1 25

21

200

20 50 18 200
A2

15

100

30

100

32 25 40 200
A3

23

100

40

10

200

12

100

21

200

600
bj 200 300 200 100 200 1000

Задача 4 (№53)

Условие:

Определить экстремум целевой функции вида

F = c11x12+c22x22+c12x1x2+b1x1+b2x2

при условиях:

a11x1+a12x2<=>p1

a21x1+a22x2<=>p2.

1.         Найти стационарную точку целевой функции и исследовать ее (функцию) на выпуклость (вогнутость) в окрестностях стационарной точки.

2.         Составить функцию Лагранжа.

3.         Получить систему неравенств в соответствии с теоремой Куна-Таккера.

4.         Используя метод искусственных переменных составить симплекс-таблицу и найти решение полученной задачи линейного программирования.

5.         Дать ответ с учетом условий дополняющей нежесткости.

b1 b2 c11 c12 c22 extr a11 a12 a21 a22 p1 p2

Знаки огр.

1 2

53 6 1,5 -2 -4 –1 max 2,5 -1 3 2,5 7 13 ³ ³

Решение:

Целевая функция:

F= -2x12-x22-4x1x2+6x1+1,5x2→max

Ограничения g1(x) и g2(x): 2,5x1-x2³7 2,5x1-x2–7³0

3x1+2,5x2³13 3x1+2,5x2-13³0

1) определим относительный максимум функции, для этого определим стационарную точку (х10, х20):

 →

2) Исследуем стационарную точку на максимум, для чего определяем выпуклость или вогнутость функции

F11 (х10, х20) = -4 < 0

F12 (х10, х20)=-4

F21 (х10, х20)=-4

F22 (х10, х20)=-2

F11 F12 -4 -4

F21 F22 -4 -2

Т.к. условие выполняется, то целевая функция является строго выпуклой в окрестности стационарной точки

3) Составляем функцию Лагранжа:

L(x,u)=F(x)+u1g1(x)+u2g2(x)=-2x12-x22-4x1x2+6x1+1,5x2+u1 (2,5x1-x2–7)+ u2 (3x1+2,5x2-13).

Получим уравнения седловой точки, применяя теорему Куна-Таккера:

i=1;2

Объединим неравенства в систему А, а равенства в систему В:

Система А:

Система В:

Перепишем систему А:

6-4x1-4x2+2,5u1+3u2 <0

1,5-4x1-2x2-u1+2,5u2 <0

2,5x1-x2–7³0

3x1+2,5x2–13³0

4)Введем новые переменные

V={v1,v2}≥0; W={w1,w2}≥0

в систему А для того, чтобы неравенства превратить в равенства:

6-4x1-4x2+2,5u1+3u2 + v1=0

1,5-4x1-2x2-u1+2,5u2 + v2=0

2,5x1-x2–7- w1=0

3x1+2,5x2–13- w2=0

Тогда

- v1=6-4x1-4x2+2,5u1+3u2

- v2=1,5-4x1-2x2-u1+2,5u2

w1=2,5x1-x2–7

w2=3x1+2,5x2–13

Следовательно, система В примет вид:

 - это условия дополняющей нежесткости.

5) Решим систему А с помощью метода искусственных переменных.

Введем переменные Y={y1; y2} в 1 и 2 уравнения системы

6-4x1-4x2+2,5u1+3u2 + v1 -y1=0

1,5-4x1-2x2-u1+2,5u2 + v2 -y2=0

2,5x1-x2–7- w1=0

3x1+2,5x2–13- w2=0

и создадим псевдоцелевую функцию Y=My1+My2→min

Y’=-Y= -My1-My2→max.

В качестве свободных выберем х1, х2, v1, v2, u1, u2;

а в качестве базисных y1, y2, w1, w2.

Приведем систему и целевую функцию к стандартному виду, для построения симплекс-таблицы:

y1=6-(4x1+4x2-2,5u1-3u2 - v1)

y2=1,5-(4x1+2x2+u1-2,5u2 -v2)

w1=-7-(-2,5x1+x2)

w2=-13-(-3x1-2,5x2)

Y’=-Y=-My1-My2=-7,5M-(-8x1-6x2+1,5u1+5,5u2+ v1+v2) M

Решим с помощью симплекс-таблицы. Найдем опорное решение:


-7,5M

4,5M

-8M

12M

-6M

3M

1,5M

3M

5,5M

-7,5M

M

0

M

-3M

6

-3

4

-8

4

-2

-2,5

-2

-3

5

-1

0

0

2

1,5

3/4

4

2

2

0,5

1

0,5

-2,5

-5/4

0

0

-1

-0,5

-7

-3/4

-2,5

-2

1

-0,5

0

-0,5

0

5/4

0

0

0

0,5

-13

15/8

-3

5

-2,5

5/4

0

5/4

0

-25/16

0

0

0

-5/4

Меняем и

-3M

3M

4M

-4M

3M

-2M

4,5M

-4,5M

-2M

M

M

-M

-2M

2M

3

3/2

-4

-2

-2

-1

-4,5

-9/4

2

0,5

-1

-0,5

2

1

3/4

15/8

2

-2,5

0,5

-5/4

0,5

-45/16

-5/4

5/8

0

-5/8

-0,5

5/4

-31/4

-15/8

-4,5

2,5

-0,5

5/4

-0,5

45/16

5/4

-5/8

0

5/8

0,5

-5/4

-89/8

75/32

2

-25/8

5/4

-25/16

5/4

-225/64

-25/16

25/32

0

-25/32

-5/4

25/16

Меняем  и

0

0

0

0

M

0

0

0

M

0

0

0

0

0

3/2

77/8

-2

-1

-1

-3/4

-9/4

-37/16

0,5

5/8

-0,5

-5/8

1

3/4

21/8

77/32

-0,5

-1/4

-3/4

-3/16

-37/16

-37/64

5/8

5/32

-5/8

-5/32

3/4

-3/16

-77/8

77/16

-2

-0,5

3/4

-3/8

37/16

-37/32

-5/8

5/16

5/8

-5/16

-3/4

3/8

-281/32

693/128

-9/8

-9/16

-5/16

-27/64

-145/64

-333/256

25/32

45/128

-25/32

 -45/128

5/16

27/64

Меняем  и

0

0

0

0

M

0

0

0

M

0

0

0

0

0

89/8

431/18

-1

-16/9

-7/4 -73/16 9/8 -9/8 7/4

161/32

431/72

-1/4

-4/9

-15/16 -185/64 25/32 -25/32 9/16

77/16

431/36

-0,5

-8/9

-3/8 -37/32 5/16 -5/16 3/8

-431/32

431/18

-9/16

-16/9

-47/64 -913/256 145/128 -145/128 47/64

Меняем  и

0 0 M 0 M 0 0

2525/72

3173/288

2417/144

431/18

Итак, =====, =16,785, =11,017, =23,944, =35,07

6) Условия дополняющей нежесткости выполняются ,значит, решения исходной задачи квадратичного программирования существует.

Ответ: существует.


Литература.

1) Курс лекций Плотникова Н.В.

2) Пантелеев А.В., Летова Т.А. «Методы оптимизации в примерах и задачах».


Информация о работе «Исследование операций и теория систем»
Раздел: Информатика, программирование
Количество знаков с пробелами: 12610
Количество таблиц: 24
Количество изображений: 0

Похожие работы

Скачать
12522
25
15

... и направление ветра, плотность воздуха и др. 4.  Эквифинальность. Рано или поздно, самолет вынужден будет приземлится или разобьется. Т.о. скорости, ускорения, моменты и силы будут равны нулю. Исследование операций   Задача 1 Авиакомпания «Небесный грузовик», обслуживающая периферийные районы страны, располагает А1 самолетами типа 1, А2 самолетами типа 2, А3 самолетами типа 3, которые она ...

Скачать
47466
0
0

... называют системообразующие, системоохраняющие факторы, важными среди которых являются неоднородность и противоречивость ее элементов. Коммуникативность. Эта закономерность составляет основу определения системы, предложенного В. Н. Садовским и Э. Г, Юдиным в книге «Исследования по общей теории систем». Систе­ма образует особое единство со средой; как правило, любая исследуемая система представляет ...

Скачать
642548
0
0

... буржуа. М. 1987. Гвардини Р. Конец Нового времени//"Вопросы философии", 1990. Легенда о докторе Фаусте. М. 1978. I. АНТРОПОЛОГИЧЕСКАЯ ТРАДИЦИЯ В КУЛЬТУРОЛОГИИ 1. КУЛЬТУРОЛОГИЯ - ИНТЕГРАЦИЯ ЗНАНИЙ О КУЛЬТУРЕ Антропологическая традиция в культурологии — традиция ис­следования культуры в культурной и социальной антропологии. Культурология как интегративная наука формируется на сты­ке целого ряда ...

Скачать
96339
12
7

... damn(t)/dt =[daij(t)/dt] 1.3 ПОНЯТИЕ ДИНАМЧЕСКОГО ОБЬЕКТА. Физический объект - физическое устройство, характеризуемое некоторым числом свойств, соответствующих целям его использования. В теории систем существенным является не физическое, а математическое описание свойств объекта и соотношений между ними. В теории систем объектом А является абстрактный объект, связанный с множеством ...

0 комментариев


Наверх