3. Чисельні методи знаходження визначеного

Інтеграла зі змінною верхньою межею

У деяких випадках необхідно обчислити такі інтеграли

Можна, звичайно, розглядати його для кожного значення верхньої границі х як інтеграл зі сталими границями і обчислювати за однією з квадратурних формул, що невигідно у випадку великої кількості значень x. Краще вибрати деяку сітку і скласти таблицю значень інтеграла на цій сітці Fn=F(x) за квадратурної формули високої точності. Тоді

(3.1)

причому останній інтеграл можна одчислювати за простими квадратурними формулами.

Окрім того, маючи таблицю F(xn), можна знаходити F(x) інтерполяцією за цією таблицею. Природно, маючи і похідну інтеграла F¢(x)=r(x)f(x). Краще скористатись інтерполяційним поліномом Ерміта.

4. Опис обчислювального алгоритму

При реалізаціі алгоритму обчислення визначеного інтеграла зі змінними границями інтегрування використовуються процедури та функцiї, для того щоб скоротити витрати машинного часу при обчислюваннi, та для компактностi программи. Программа для знаходження написана на мовi Delphi5, стан пограмми – вiдлажена.

5.   Обговорювання результатів

Таблиця 1

Формула (3.1) Формула Сімпсона Формула трапецій Дійсне значення інтеграла
a=0; b=1;

-0.7974398040

Різниця 0.0000012883

-0.7974386790

Різниця 0.0000001633

-0.7993252434

Різниця 0.00188672780

-0.7974385156
a=0; b=2; 3.9190337956 Різниця 0.0000062805 3.9190353338 Різниця 0.0000047422 3.90875628130 Різниця 0.01028379486 3.9190400761
a=0; b=3; 10.5498688094 Різниця 0.00002744251 10.5498688094 Різниця 0.00002744251 10.5247085565 Різниця 0.02518769537 10.5498962519
a=0; b=4; 17.8842287345 Різниця 0.0000804723 17.8842201707 Різниця 0.00008903613 17.8382724576 Різниця 0.0460367491 17.8843092068
a=0; b=5; 25.5043003647 Різниця 0.0001835185 25.5042688642 Різниця 0.00021501907 25.4318420115 Різниця 0.0726418717 25.5044838833
a=0; b=6;

33.2576007639 Різниця

0.00035637138

33.2575244054 Різниця 0.00043272988 33.1529684530 Різниця 0.1049886822 33.2579571352

Таблиця 1 була отримана при наступних вхідних даних:

Кількість вузлів при побудові таблиці значень інтегралу (1) =20

Кількість вузлів при застосуванні формули трапецій =20

Кількість вузлів при застосуванні формули Сімпсона =20

Висновки

Таким чином з таблиці 1 видно, що чим більший проміжок ми беремо тим кращу точність отримаємо, навіть краще за формулу Сімпсона, але загальна похибка (відносно дійсного значення) також збільшується. Формулу (1) доцільно використовувати, якщо потрібно обчислити інтеграл на відносно великому проміжку та якщо треба обчислити відразу декілька інтегралів.

Список посилань

1.   Каліткін Н.Н. ‘Чисельні методи’ – М.: Наука, 1978. – 512 с.

2.   Балашова С.Д. ‘Тексты лекций по курсу “ Численные методы”’. – Днепропетровск: Из – во ДГУ, 1989. – 206 с

3.   Мусiяка В.Г. Основи чисельних методiв механiки. – Днiпропетровськ: Вид – во ДДУ, 1993. – 156 с.

4.    Методические рекомендации по курсу “ Методы вычислений в инженерных расчётах”/ Составитель В.Г. Мусияка. – Днепропетровск: Из – во ДГУ, 1992. – 40 с.

5.   Фіхтегольц Г.М. ‘Основи математичного аналізу’– М.: Наука, 1968. – 440 с.

Д О Д А Т К И

А Опис вихiдних даних та результатiв розрахунку

Вихiднi данi

Кількість вузлів при побудові таблиці значень інтегралу (1) nGrid - integer;

Кількість вузлів при застосуванні формули трапецій nTrap - integer;

Кількість вузлів при застосуванні формули Сімпсона nSim - integer;

Границі інтегрування a і b – real;

Наслiдки виконання програми друкуються у виглядi:

Вихідні дані це функції типа real.

FullIntegral(L,R);

integralSimpsona(L,R);

integralTrapeciay(L,R);

first(L,R);


B Схемаобчислювального алгоритму

Функція y(x) тип real Функція first(x1,x2) тип real


Процедура createGrid Процедура createGridOfInt


Процедура setN(nG, nT, nS )


Функція integralSimpsona(aSim,bSim) тип real

Блок-схема: решение: aSim<>bSimОвал: Початок

aSim, bSim : real

 
 

так ні


Функція integralTrapeciay(aTrap,bTrap) тип real

Овал: Кінець

Функція FullIntegral(aFull,bFull:real) тип real


так ні

так ні


так  ні

так ні

С Лiстiнг програми

unit funct;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, ExtCtrls, Math;

const

a = 0;

b = 6;

type

one_array = array of real;

Parametrs = record

nSimp, nTrap :integer;

end;

function y(x:real):real;

function first(x1,x2:real):real;

procedure setN(nG, nT, nS :integer);

procedure createGrid;

procedure createGridOfInt;

function integralSimpsona(aSim,bSim:real):real;

function integralTrapeciay(aTrap,bTrap:real):real;

function FullIntegral(aFull,bFull:real):real;

var

Xgrid:one_array;  GridOfInt:one_array; nGrid, nSim, nTrap :integer;

implementation

//--------------------------------------------------------------

function y(x:real):real;

begin

Result:=2*arctan(x)-11*Power(3,(-x))+5;

end;

//--------------------------------------------------------------

function first(x1,x2:real):real;

begin

result:=5*x2+2*x2*ArcTan(x2)+11*Power(3,(-x2))/Ln(3)-Ln(1+x2*x2)-(5*x1+2*x1*ArcTan(x1)+11*Power(3,(-x1))/Ln(3)-Ln(1+x1*x1));

end;

//--------------------------------------------------------------

procedure setN(nG, nT, nS :integer);

begin

nGrid:=nG; nSim:=nS; nTrap:=nT;

end;

//--------------------------------------------------------------

procedure createGrid;

var i:integer; h:real;

begin

h:=(b-a)/nGrid;

SetLength(Xgrid,nGrid+1);

for i:=0 to nGrid do

Xgrid[i]:=a+h*i;

end;

//--------------------------------------------------------------

procedure createGridOfInt;

var i, n :integer;

begin

n:=High(Xgrid);

SetLength(GridOfInt,n+1);

for i:=1 to n do

GridOfInt[i]:=integralSimpsona(a,Xgrid[i]);

end;

//--------------------------------------------------------------

function integralSimpsona(aSim,bSim:real):real;

var X:one_array; i:integer; sum1, sum2, h:real;

begin

if(aSim<>bSim)then

begin

h:=(bSim-aSim)/nSim;

SetLength(X,nSim+1);

for i:=0 to nSim do

X[i]:=aSim+h*i;

sum1:=0;

sum2:=0;

for i:=1 to (nSim div 2) do

sum1:=sum1+y(X[2*i-1]);

for i:=1 to ((nSim div 2)-1) do

sum2:=sum2+y(X[2*i]);

Result:=(bSim-aSim)*(y(X[0])+y(X[nSim])+4*sum1+2*sum2)/(3*nSim);

end

else

Result:=0;

end;

//--------------------------------------------------------------

function integralTrapeciay(aTrap,bTrap:real):real;

var i:integer; sum, h :real;  X:one_array;

begin

h:=(bTrap-aTrap)/nTrap;

SetLength(X,nTrap+1);

for i:=0 to nTrap do

X[i]:=aTrap+h*i;

sum:=(y(X[0])+y(X[nTrap]))/2;

for i:=1 to (nTrap-1) do

sum:=sum+y(X[i]);

Result:=sum*h;

end;

//--------------------------------------------------------------

function FullIntegral(aFull,bFull:real):real;

var z1, z2, z3, raznost :real; i, ai, bi :integer;

begin

if(aFull<>bFull)then

begin

for i:=0 to (High(Xgrid)-1) do

begin

if((Xgrid[i]<=aFull)and(aFull<=Xgrid[i+1]))then ai:=i;

if((Xgrid[i]<=bFull)and(bFull<=Xgrid[i+1]))then bi:=i;

end;

raznost:=GridOfInt[ai]+integralTrapeciay(Xgrid[ai],aFull);

Result:=GridOfInt[bi]+integralTrapeciay(Xgrid[bi],bFull)-raznost;

end

else

Result:=0;

end;

//--------------------------------------------------------------

end.


unit UnitMAIN;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, jpeg, ExtCtrls, StdCtrls, funct;

type

TForm1 = class(TForm)

Image1: TImage; Image2: TImage; Button1: TButton; Image3: TImage; Edit1: TEdit; Edit2: TEdit;

Label1: TLabel; Label2: TLabel; Label3: TLabel; Memo1: TMemo; Panel1: TPanel; Button2: TButton;

Button3: TButton; Label4: TLabel; Label5: TLabel; Label6: TLabel; Label7: TLabel; Edit3: TEdit;

Edit4: TEdit; Edit5: TEdit; Label8: TLabel;

procedure Button1Click(Sender: TObject);

procedure Button2Click(Sender: TObject);

procedure Button3Click(Sender: TObject);

procedure FormCreate(Sender: TObject);

end;

var

Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.Button1Click(Sender: TObject);

var i:integer; intF, intS, intT, intR, L,R:real;  file1:TextFile;

begin

L:=StrToFloat(Edit1.Text); R:=StrToFloat(Edit2.Text);

if(((0<=L)and(L<=6))and(((0<=R)and(R<=6))))

then

begin

createGrid;

createGridOfInt;

intF:=FullIntegral(L,R);

Label1.Caption:=FloatToStr(intF);

intS:=integralSimpsona(L,R);

intT:=integralTrapeciay(L,R);

intR:=first(L,R);

AssignFile(file1,'Result.txt');

Rewrite(file1);

writeln(file1,'Дйствительное значение интеграла ',intR:17:15);

writeln(file1,'Значение интеграла по формуле (1) ',intF:17:15,' Расность по модулю ',abs(intF-intR):17:15);

writeln(file1,'Значение интеграла по формуле трапеций ',intT:17:15,' Расность по модулю ',abs(intT-intR):17:15);

writeln(file1,'Значение интеграла по формуле Симпсона ',intS:17:15,' Расность по модулю ',abs(intS-intR):17:15);

CloseFile(file1);

Memo1.Lines.LoadFromFile('Result.txt');

end

else ShowMessage('граници должна быть в пределах от 0 до 6');

end;

procedure TForm1.Button2Click(Sender: TObject);

begin

Panel1.Visible:=true;  Button2.Visible:=false;

end;

procedure TForm1.Button3Click(Sender: TObject);

begin

Panel1.Visible:=false; Button2.Visible:=true;

setN(StrToInt(Edit5.Text),StrToInt(Edit3.Text),StrToInt(Edit4.Text));

end;

procedure TForm1.FormCreate(Sender: TObject);

begin

setN(StrToInt(Edit5.Text),StrToInt(Edit3.Text),StrToInt(Edit4.Text));

end;

end.


Информация о работе «Інтеграли зі змінними границями»
Раздел: Информатика, программирование
Количество знаков с пробелами: 15523
Количество таблиц: 4
Количество изображений: 13

Похожие работы

Скачать
10798
0
7

... йного інтеграла зводять до обчислення так званого повторного інтеграла - двох звичайних визначених інтегралів. Покажемо, як це робиться. Припустимо, що при  функція . Тоді, згідно з формулою (7), подвійний інтеграл виражає об'єм циліндричного тіла (рис.3) з основою , обмеженого зверху поверхнею . Обчислимо цей об'єм за допомогою методу паралельних перерізів [6]: , де  - площа перерізу тіла ...

Скачать
13145
1
0

... прийнятної точності необхідна велика кількість статистичних випробувань. Теорія методу Монте-Карло вивчає способи вибору випадкових величин  для вирішення різних завдань, а також способи зменшення дисперсії випадкових величин. 3. Програма обчислення кратного інтеграла методом Монте-Карло Обчислити певний інтеграл . за методом “Монте-Карло” по формулі , де n – число випробувань ;g(x) – щі ...

Скачать
266076
11
92

... Методичні вказівки до лабораторної роботи № З «Тепловіддача горизонтальної труби при вільному русі повітря». Тернопіль 2003 У даних методичних вказівках подані теоретичні основи, опис експернментальної установки і практичні рекомендації лля проведення лабораторної роботи і обробки дослідних даних Мета роботи - засвоїти знання з теорії" конвсктивнот теплообміну при ...

Скачать
19206
0
25

р, формула Гріна, функція Рімана. Мета роботи: в даній роботі необхідно ознайомитись з методом отримання розв’язку задачі Гурса для телеграфного рівняння (1.1) з початковими умовами (1.2); довести існування та єдиність цього розв’язку; навести приклади та вказати області вживання цього методу у прикладних науках. The summary.   In the given operation some questions, concerning ...

0 комментариев


Наверх