СОДЕРЖАНИЕ
Введение
1. Постановка задачи
2. Математические и алгоритмические основы решения задачи
2.1 Понятие гамма-функции
2.2 Вычисление гамма функции
3. Функциональные модели и блок-схемы решения задачи
4. Программная реализация решения задачи
5. Пример выполнения программы
Заключение
Список использованных источников и литературы
ВВЕДЕНИЕ
Выделяют особый класс функций, представимых в виде собственного либо несобственного интеграла, который зависит не только от формальной переменной, а и от параметра.
Такие функции называются интегралами зависящими от параметра. К их числу относится гамма функции Эйлера.
Гамма функция представляется интегралом Эйлера второго рода:
.
Гамма-функция расширяет понятие факториала на поле комплексных чисел. Обычно обозначается Γ(z).
Была введена Леонардом Эйлером, а своим обозначением гамма-функция обязана Лежандру.
Через гамма-функции выражается большое число определённых интегралов, бесконечных произведений и сумм рядов.
1. Постановка задачи
Требуется реализовать основные способы вычисления гамма-функции:
1. Гамма-функции для целых положительных n равна
Г (n) = (n - 1)! = 1·2... (n - 1). (1)
2. Для x>0 гамма-функция получается из ее логарифма взятием экспоненты.
. (2)
3. Гамма-функции для ряда точек:
(3)
Пример 1.
Вычислить гамма-функции Г(6).
Решение:
Так как 6 – положительное целое число, воспользуемся формулой (1):
Г(6) =(6-1)! = 5! = 120
Ответ: 120.
Пример 2.
Вычислить гамма-функции Г(0,5).
Решение:
Воспользуемся формулой (2):
.
.
Ответ: .
Пример 3.
Вычислить гамма-функции Г(1,5).
Решение:
Воспользуемся формулой (3):
y = 1.5 + 2 = 3.5.
.
Ответ: .
2. Математические и алгоритмические основы решения задачи
2.1 Понятие гамма-функции
Гамма функцию определяет интеграл Эйлера второго рода
G(a) = (2.1)
сходящийся при .
Рисунок 1. График гамма-функции действительного переменного
Положим =ty, t > 0 , имеем
G(a) =
и после замены , через и t через 1+t ,получим
Умножая это равенство и интегрируя по t и пределах от 0 до , имеем:
или после изменения в правой части порядка интегрирования ,получаем:
откуда
(2.2)
заменяя в (2,1) , на и интегрируем по частям
получаем рекурентною формулу
(2.3)
так как
Рисунок 2. График модуля гамма-функции на комплексной плоскости
При целом имеем
(2.4)
то есть при целых значениях аргумента гамма-функция превращается в факториал, порядок которого на единицу меньше взятого значения аргумента. При n=1 в (2.4) имеем
... информационных технологий, которое заключается как в совершенствовании методов организации информационных процессов, так и их реализации с помощью конкретных инструментов – сред и языков программирования. Итогом работы можно считать созданную функциональную модель вычисления неэлементарных функций. Данная модель применима к функциям, если она не задана одной формулой посредством конечного числа ...
... ряде прикладных программ. Сферы применения Лиспа многообразны: наука и промышленность, образование и медицина, от декодирования генома человека до системы проектирования авиалайнеров. 3. Технологическая реализация системы подготовки обработки детали станка с ЧПУ 3.1 Описание кодов программного модуля Любой проект в Delphi состоит из нескольких частей (набора файлов, каждый из которых ...
... с приглашением по запросу (в машинной графике)required parameter обязательный параметрrequired space обязательный пробел (в системах подготовки текстов)requirements specification 1. техническое задание 2. описание требований к программному средствуrerun перезапуск, повторный запускreschedule переупорядочивать очередь (о диспетчере операционной системы)reschedule interval период переупорядочения ...
ие MSX-DOS, учитывала необходимость поддержки обширного программного обеспечения, разработанного для СР/М, и одновременно ориентировалась на новые в то время разработки, связанные с DOS. 4. Операционные системы, основанные на графическом интерфейсе Помимо широко распространенных машин, проектируемых в соответствии со сложившимися стандартами, часто создаются машины, в которых особо выделяется ...
0 комментариев