2.4.1 Массивно-параллельные суперкомпьютеры серии CRY T3

Основанная в 1972 году фирма Cry Research Inc. (сейчас Cry Inc.), прославившаяся разработкой векторного суперкомпьютера Cry 1, в 1993 – 1995 годы выпустила модели Cry T3D/T3E, полностью реализующие принцип систем с массовым параллелизмом (систем MPP-архитектуры). В максимальной конфигурации эти компьютеры объединяют 32 – 2048 процессоров DEC Alpha 21064/150 MHz, 21164/600 MHz, 21164A/675 MHz (в зависимости от модели), вся предварительная обработка и подготовка программ (например, компиляция) выполняется на управляющей машине (хост-компьютере).

Разработчики серии Cry T3D/T3E пошли по пути создания виртуальной общей памяти. Каждый процессор может обращаться напрямую только к своей локальной памяти, но все узлы используют единое адресное пространство. При попытке обращения по принадлежащему локальной памяти другого процессора адресу генерируется специализированное аппаратное прерывание и операционная система выполняет пересылку страницы с одного узла на другой, причем вследствие чрезвычайно высокого быстродействия коммуникационной системы (пиковая скорость передачи данных между двумя узлами достигает 480 Мбайт/с) этот подход в целом оправдан. Однако замечен резко снижающий производительность эффект "пинг-понга" – в случае попадания на одну страницу переменных, модифицируемых несколькими процессорами, эта страница непрерывно мигрирует между узлами. Вычислительные узлы выполняют программы пользователя в монопольном режиме (однозадачный режим).

Конкретное исполнение компьютеров серии Cry T3 характеризуется тройкой чисел, например, 24/16/576 (управляющие узлы/узлы операционной системы/вычислительные узлы); при используемой топологии "трехмерный тор" каждый узел (независимо от его расположения) имеет шесть непосредственных соседей. При выборе маршрута между двумя узлами А и В (3D-координаты которых суть рисунок 11) сетевые машрутизаторы, начиная процесс с начальной вершины А, сначала выполняют смещение по координате X таким образом, пока координаты очередного узла связи и узла B не станут равными; затем аналогичные действия выполняются по координате Y и далее по Z (физически подобная маршрутизация происходит одновременно по всем трем координатам). Смещения могут быть и отрицательными, при отказе одной или нескольких связей возможен их обход.

Другой интересной особенностью архитектуры Cry T3 является поддержка барьерной синхронизации – аппаратная организация ожидания всеми процессами определенной точки в программе, при достижении которой возможна дальнейшая работа. Компьютеры серии T3E демонстрировали производительность 1,8 – 2,5 Тфлопс (на 2048 микропроцессорах Alpha/600 MHz).

Дальнейшим развитием линии массивно-параллельных компьютеров Cry T3 является суперкомпьютер Cry XT3. Каждый вычислительный узел Cry XT3 включает процессор AMD Opteron, локальную память (1 – 8 Гбайт) и обеспечивающий связь по коммуникационному блоку Cry SeaStar канал Hyper Transport, имеющий пиковую производительность (для AMD Opteron 2,4 GHz) от 2,6 Тфлопс (548 процессоров, оперативная память 4,3 Тбайт, топология 6×12×8) до 147 Тфлопс. Cray XT3 работает под управлением операционной системы UNICOS/lc, позволяющей объединять до 30000 вычислительных узлов, применяются компиляторы Fortran 77/90/95 и C/C++, коммуникационные библиотеки MPI (Message Passing Interface c поддержкой стандарта MPI 2.0) и ShMem (разработанная Cray Research Inc. библиотека для работы с общей памятью), стандартные библиотеки численных расчетов.

Несмотря на достигнутые столь высокие результаты в области MPP-систем фирма Cry Inc. производит векторно-конвейерный компьютеры, причем эти модели могут быть объединены в MPP-систему. Производительность каждого процессора компьютера Cry SV1 достигает 4 Гфлопс (общая пиковая производительность системы 32 Гфлопс), общее число процессоров может достигать 1000.


Рисунок 11. Коммуникационная решетка "трехмерный тор" компьютера Cray T3E

2.4.2 Кластерные системы класса BEOWULF

Запредельная стоимость промышленных массивно-параллельных компьютеров не давали покоя специалистам, желающим применить в своих исследованиях вычислительные системы сравнимой мощности, но не имеющих возможностей приобрести промышленные супер-ЭВМ. Поиски в этом направлении привели к развитию вычислительных кластеров (не путать с кластерами баз данных и WEB-серверов); технологической основой развития кластеризации стали широкодоступные и относительно недорогие микропроцессоры и коммуникационные (сетевые) технологии, появившиеся в свободной продаже в девяностых годах.

Вычислительный кластер представляет собой совокупность вычислительных узлов (от десятков до десятков тысяч), объединенных высокоскоростной сетью c целью решения единой вычислительной задачи. Каждый узел вычислительного кластера представляет собой фактически программируемых электронно-вычислительных машин (часто двух- или четырех- процессорный/ядерный SMP-сервер), работающую со своей собственной операционной системой (в подавляющем большинстве Linux(*)); объединяющую сеть выбирают исходя из требуемого класса решаемых задач и финансовых возможностей, практически всегда реализуется возможность удаленного доступа на кластер посредством InterNet.

Вычислительные узлы и управляющий компьютер обычно объединяют (минимум) две (независимые) сети – сеть управления (служит целям управления вычислительными узлами) и (часто более производительная) коммуникационная сеть (непосредственный обмен данными между исполняемыми на узлах процессами), дополнительно управляющий узел имеет выход в Internet для доступа к ресурсам кластера удаленных пользователей, файл-сервер выполняет функции хранения программ пользователя (рисунок 12). Администрирование кластера осуществляется с управляющей ЭВМ (или посредством удаленного доступа), пользователи имеют право доступа (в соответствие с присвоенными администратором правами) к ресурсам кластера исключительно через управляющий компьютер.

Windows-кластеры значительной мощности до настоящего времени остаются экзотикой в силу известных причин (несмотря на активно продвигаемые MS решения класса Windows Compute Cluster Server – WCCS).

Одним из первых кластерных проектов явился проект BEOWULF. Проект "БЕОВУЛЬФ" был заложен в созданном на основе принадлежащей NASA организации GSFC (Goddard Space Flight Center) исследовательском центре CESDIS (Center of Excellence in Space Data and Information Sciences) в 1994 году и стартовал сборкой в GSFC 16шестнадцатиузлового кластера (на процессорах 486DX4/100 MHz, 16 Mb памяти, 3 сетевых адаптера на каждом узле и 3 параллельных 10 Mbit Ethernet-кабелей); вычислительная система предназначалась для проведения работ по проекту ESS (Earth and Space Sciences Project).

Позднее в подразделениях NASA были собраны другие модели BEOWULF-подобных кластеров: например, theHIVE (Highly-parallel Integrated Virtual Environment) из 64 двухпроцессорных (Pentium Pro/200 MHz, 4 Gb памяти и 5 коммутаторов Fast Ethernet в каждом) узлов. Именно в рамках проекта Beowulf были разработаны драйверы для реализации режима Channel Bonding.

Рисунок 12. Укрупненная схема вычислительного кластера

"Беовульф" – типичный образец многопроцессорной системы MIMD (Multiple Instruction − Multiple Data), при этом одновременно выполняются несколько программных ветвей, в определенные промежутки времени обменивающиеся данными. Многие последующие разработки во всех странах мира фактически являются кланами Beowulf.

В 1998 году в национальной лаборатории Лос-Аламос астрофизик Michael Warren с сотрудниками группы теоретической астрофизики построили вычислительную систему Avalon, представляющую Linux-кластер на процессорах DEC Alpha/533 MHz. Первоначально Avalon состоял из 68 процессоров, затем был расширен до 140, в каждом узле установлено 256 MB оперативной памяти, EIDE-жесткий диск 3,2 Gb, сетевой адаптер фирмы Kingston.

Узлы соединены с помощью четырех коммутаторов Fast Ethernet и центрального двенадцатипортового коммутатора Gigabit Ethernet фирмы 3Com.

Типичным образцом массивно-параллельной кластерной вычислительной системы являются МВС-1000M (коммуникационная сеть – Myrinet 2000, скорость обмена информацией 120–170 Мбайт/сек, вспомогательные – Fast и Gigabit Ethernet) и МВС-15000ВС.

Требование максимальной эффективности использования ресурсов вычислительных мощностей (как процессорных, так и оперативной и дисковой памяти) отдельных процессоров кластера неизбежно приводит к снижению "интеллектуальности" операционной системы вычислительных узлов до уровня мониторов; с другой стороны, предлагаются распределенные кластерные операционные системы – например, Amoeba, Chorus, Mach и др.

Специально для комплектации аппаратной части вычислительных кластеров выпускаются Bladed - сервера (*) – узкие вертикальные платы, включающие процессор, оперативную память (обычно 256 – 512 МБайт при L2-кэше 128 – 256 КБайт), дисковую память и микросхемы сетевой поддержки; эти платы устанавливаются в стандартные "корзины" формата 3U шириной 19² и высотой 5,25² до 24 штук на каждую (240 вычислительных узлов на стойку высотою 180 см). Для снижения общего энергопотребления могут применяться расходующие всего единицы ватт (против 75 W для P4 или 130 W для кристаллов архитектуры IA-64) процессоры Transmeta Crusoe серии TM 5x00 с технологией VLIW; при этом суммарная потребляемая мощность при 240 вычислительных узлах не превышает 1 кВт.

2.4.3 Коммуникационные технологии, используемые при создании массово-параллельных суперкомпьютеров

Важным компонентом массово-параллельных компьютеров является коммуникационная среда – набор аппаратных и программных средств, обеспечивающих обмен сообщениями между процессорами. Фактически коммуникационная среда в данном случае является аналогом общей шины традиционных электронно-вычислительных машин и посему оказывает сильнейшее влияние на производительность всей вычислительной системы.


Заключение

Параллельнoe программирование представляет собой целое направление смежных вопросов, включающих аппаратную поддержку, анализ структуры алгоритмов с целью выявления параллелизма и алгоритмические языки для программирования параллельных задач.

Технологии параллельных вычислений в настоящее время бурно развиваются в связи с требованиями мировой науки и технологий.

Достаточно часто приходится сталкиваться с такими задачами, которые, представляя немалую ценность для общества, не могут быть решены с помощью относительно медленных компьютеров офисного или домашнего класса. Единственная надежда в этом случае возлагается на компьютеры с большим быстродействием, которые принято называть суперкомпьютерами. Только машины такого класса могут справиться с обработкой больших объемов информации. Это могут быть, например, статистические данные или результаты метеорологических наблюдений, финансовая информация. Иногда скорость обработки имеет решающее значение. Это составление прогноза погоды и моделирование климатических изменений. Чем раньше предсказано стихийное бедствие, тем больше возможностей подготовиться к нему. Важной задачей является моделирование лекарственных средств, расшифровка генома человека, разведка месторождений нефти и газа и другие объемные задачи, решение которых возможно с помощью суперкомпьютеров и кластерных систем.

Сегодняшняя проблема – явный недостаток аппаратных средств для параллельных вычислений в учебных и научных учреждениях, что не дает возможности всестороннего освоения соответствующих технологий; часто практикуемое чисто теоретическое изучение предмета приводит скорее к негативным, чем к позитивным следствиям. Только сейчас появляются технологии, позволяющие ввести практику параллельных вычислений в большинство учебных и производственных лабораторий.

Создание эффективных параллельных программ требует намного более серьезного и углубленного анализа структуры алгоритмов, нежели при традиционно-последовательном программировании, причем некоторые подходы невозможно реализовать без серьезного изменения мышления программистов.

Наряду с теоретическим анализом для получения практически значимых результатов необходима постоянная практика в создании параллельных программ.


Список использованной литературы

1.         С. Немнюгин, О. Стесик. Параллельное программирование для многопроцессорных вычислительных систем

2.         Воеводин В.В., Воеводин Вл.В. Параллельные вычисления. -СПб.: БХВ-Петербург, 2004. -608 с.

3.         Гарви М.Дейтел. Введение в операционные системы (пер. с англ. Л.А.Теплицкого, А.Б.Ходулева, Вс.С.Штаркмана под редакцией Вс.С. Штаркмана). -М.: Мир, 1987 (электронная версия http://www.deepweb.ru, 2004)

4.         Гергель В.П., Стронгин Р.Г. Основы параллельных вычислений для многопроцессорных вычислительных систем (учебное пособие, изд. 2, дополненное). -Н.Новгород.: изд. ННГУ им. Н.И.Лобачевского, -2003 (электронная версия http://pilger.mgapi.edu/metods/1441/basic_pr.zip).

5.         Корнеев В.В. Вычислительные системы. -М.: Гелиос АРВ, -2004, -512 с.

6.         Лацис А.О. Как построить и использовать суперкомпьютер. -М.: Бестселлер, 2003.-240 с.

7.         Крюков В.А.. Разработка параллельных программ для вычислительных кластеров и сетей. // Информационные технологии и вычислительные системы. -М.: № U2,2003.

8.         Шпаковский Г.И. Организация параллельных ЭВМ и суперскалярных процессоров. // Учеб. пособие. -Минск.: Белгосуниверситет, 1996. -296 с. (электронная версия http://pilger.mgapi.edu/metods/1441/spakovsk.zip)

9.         Шпаковский Г.И., Серикова Н.В. Программирование для многопроцессорных систем в стандарте MPI. -Минск:, БГУ, 2002. -325 с. (электронная версия http://www.cluster.bsu.by/download/book_PDF.pdf, http://pilger.mgapi.edu/metods/1441/pos_mpi.pdf)

10.      Андрианов А.Н., Бугеря А.Б., Ефимкин К.Н., Задыхайло И.Б. Норма. Описание языка. Рабочий стандарт. //Препринт ИПМ им.М.В.Келдыша РАН, № 120, 1995, -50 с.8.

11.      Информационно-аналитические материалы по параллельным вычислениям (электронная версия http://parallel.ru


Информация о работе «Массивно-параллельные суперкомпьютеры серии Cry T3 и кластерные системы класса BEOWULF»
Раздел: Информатика, программирование
Количество знаков с пробелами: 70495
Количество таблиц: 0
Количество изображений: 12

0 комментариев


Наверх