Введение
Для того, чтобы описать динамику различных процессов, протекающих в природных и в технических системах, составляют, опираясь на физические законы, дифференциальные уравнения. Так, в частности, приходится поступать при исследовании функционирования автоматических систем; работы судовых энергетических комплексов, электрических агрегатов, судовых вспомогательных механизмов, систем навигации и т.д. В ряде случаев эти уравнения допускают линеаризацию и могут быть записаны в виде:
,
где y(t) – неизвестная функция, a0, a1,...an – постоянные коэффициенты, а j(x) – некоторая известная функция независимого аргумента t, которая обычно выражает внешнее воздействие, оказываемое на систему.
1. Цель контрольной работы
Приобретение навыков алгоритмизации и программирования задач численного интегрирования обыкновенных дифференциальных уравнений и систем с последующим моделированием результатов на персональном компьютере и представлением их в виде таблиц и графиков.
В результате выполнения контрольной работы студент обязан:
1. Научиться решать линейные дифференциальные уравнения численными и символьными методами в рамках пакета компьютерной математики MathCAD.
2. Ознакомиться с основными алгоритмами существующих компьютерных методов.
3. Определить точность этих методов путем сравнения результатов, получаемых путем приближенного и аналитического решений.
2. Аналитические методы
Общее решение дифференциального уравнения n-го порядка – неизвестная функция y(t) – содержит n произвольных постоянных. Их можно определить, зная начальные условия, накладываемые на неизвестную функцию и на ее производные вплоть до (n-1)-порядка включительно. Аналитически (в символьном виде) такие уравнения решают классическим и операционным методами.
2.1 Классический метод
В ограниченном числе случаев вида левой части (1) допускает такое преобразование, которое позволяет найти решение путем непосредственного интегрирования, однако в общем случае порядок решения – иной.
Решение неоднородного дифференциального уравнения (с ненулевой правой частью) является суммой общего решения соответствующего однородного дифференциального уравнения y1(t) и частного решения y2(t) неоднородного дифференциального уравнения (1).
Решение однородного уравнения ищем в виде: . Подстановка его в дифференциальное уравнение приводит к характеристическому алгебраическому уравнению n-ного порядка:
,
которое имеет n корней – . В частном случае отсутствия кратных корней общее решение может быть записано в виде:
,
где Сi – произвольные постоянные, которые находятся из начальных условий.
Имеются правила, позволяющие определить вид y2(t) частного решения в зависимости от вида правой части – функции j(t). Последующая подстановка общего решения в исходное дифференциальное уравнение позволяет найти неопределенные константы Ci в выражении для y1(t).
«Классический» метод анализа процессов в настоящее время используется только в случае простейших систем, поскольку необходимость нахождения частного решения часто приводит к сложным преобразованиям, а также, кроме решения характеристического уравнения дополнительно необходимо составить и решить n уравнений для определения постоянных интегрирования.
2.2 Метод операционного исчисления
Суть метода состоит в проведении интегрального преобразования Лапласа функции, входящей в состав дифференциального уравнения, по правилу:
,
где s = a+ j×b – комплексная переменная величина.
Это преобразование сопоставляет функции действительного переменного функцию комплексного переменного. При этом для линейных дифференциальных уравнений существует изоморфизм (взаимно-однозначное соответствие) между функциями-оригиналами, входящими в уравнение, и их изображениями (образами Лапласа).
Преобразование Лапласа можно выполнить, используя блок символьных вычислений MathCAD. Этот же блок позволяет выполнить и обратное преобразование Лапласа, в соответствии с соотношением:
,
где , т. е. интегрирование проводится по прямой, лежащей в плоскости комплексного переменного s и проходящей параллельно мнимой оси jw на расстоянии s от нее, при этом Лаплас образ Y(s) должен иметь особенности слева от этой линии.
Преобразование Лапласа сводит дифференцирование функции оригинала к умножению ее образа на комплексную переменную s, поэтому решение дифференциального уравнения в пространстве оригиналов сводится к решению алгебраического уравнения в пространстве изображений.
Порядок решения дифференциального уравнения с помощью операционного исчисления представляется следующим:
- выполняя преобразование Лапласа левой и правой части дифференциального уравнения, учитываем начальные условия и переходим от дифференциального уравнения для функции оригинала y(t) к алгебраическому уравнению для Лаплас образа – Y(s) ;
- решая алгебраическое уравнение, находим в пространстве изображений в явном виде выражение для Y(s);
- выполняя обратное преобразование мы находим неизвестную функцию y(t).
Все этапы этой процедуры могут быть автоматизированы и выполнены в рамках пакета MathCAD (пример 1).
Следует заметить, что пакет MathCAD далеко не всегда способен выполнить в символьной форме результат обратного Лаплас преобразования. Дело в том, что в блок символьных преобразований пакета заложены правила выполнения данной процедуры для выражений записанных в виде элементарных дробей. Поэтому Лаплас образ предварительно разлагается на элементарные дроби. Однако, если корни полинома в знаменателе представляются в виде комбинации сложных радикалов, то MathCAD «отказывается» работать. В этом случае ему необходимо «помочь» врукопашную выполнив разложения полинома в знаменателе в соответствии с соотношением:
,
где s1, s2,…sn – корни уравнения . В примере 1 рассмотрено выполнение обратного преобразования Лапласа и для такого случая.
Рассмотренная методика нахождения аналитического решения дифференциальных уравнений может быть распространена на задачу решения системы дифференциальных уравнений. В этом случае необходимо решить не одно алгебраическое уравнение для Лаплас-образов, а систему алгебраических уравнений с помощью той же процедуры блока решений Given – Find. Отметим, что в отличие от систем компьютерной математики Mathematica 2.2.2 и Maple V R3/R4, которые легко позволяют аналитически решить линейное дифференциальное уравнение с помощью встроенных средств. Система MathCAD предполагает «ручные процедуры» запуска прямого преобразования Лапласа, составления по его результатам алгебраического уравнения и, после его решения, запуска процедуры обратного преобразования Лапласа.
... при финансовой поддержке государственной научно-технической программы «Физика квантовых и волновых процессов» (проект 1.61) и физического учебно-научного центра «Фундаментальная оптика и спектроскопия». 1. Асимптотическое поведение решений дифференциальных уравнений с малым параметром Многие колебательные системы описываются дифференциальными уравнениями с малым параметром при производных: ...
... пакетах. Заключение Результатом выполнения курсового проекта является готовый программный продукт, позволяющий решать задачу Коши для системы дифференциальных уравнений при помощи неявной схемы Адамса 3-го порядка, демонстрирующий возможности численного решения поставленной задачи с заданной степенью точности. Готовый программный продукт может найти широкое применение при решении многих ...
... + 1 надо подставить y = y - 1 end while finish Удаление невидимых линий и поверхностей Задача удаления невидимых линий и поверхностей является одной из наиболее сложных в машинной графике. Алгоритмыудаления невидимых линий и поверхностей служат для определения линий ребер, поверхностей или объемов, которые видимы или невидимы для наблюдателя, находящегося в заданной точке пространства. 3.1 ...
... ^у^е^о ^ с^-^. Итак решение по Ритцу: ^-i-^ Сравнительная таблица имеет вид: Л. 0 0,5 1 1,5 2 у^ 0 -0,275 -0,3571 -0,2758 0 ^г) о -0,2126 -0,3520 -0,3258 0 50 3.6. Об одном подходе к решению нелинейных вариационных задач В отличии от метода Ритца, искомую функцию в двуточечной вариационной задаче зададим в виде: r-^^f^-^^ При этом граничные условия и{а ) = ...
0 комментариев