Методы и алгоритмы компьютерного решения дифференциальных уравнений

Введение

Для того, чтобы описать динамику различных процессов, протекающих в природных и в технических системах, составляют, опираясь на физические законы, дифференциальные уравнения. Так, в частности, приходится поступать при исследовании функционирования автоматических систем; работы судовых энергетических комплексов, электрических агрегатов, судовых вспомогательных механизмов, систем навигации и т.д. В ряде случаев эти уравнения допускают линеаризацию и могут быть записаны в виде:

,

где y(t) – неизвестная функция, a0, a1,...an – постоянные коэффициенты, а j(x) – некоторая известная функция независимого аргумента t, которая обычно выражает внешнее воздействие, оказываемое на систему.


1. Цель контрольной работы

Приобретение навыков алгоритмизации и программирования задач численного интегрирования обыкновенных дифференциальных уравнений и систем с последующим моделированием результатов на персональном компьютере и представлением их в виде таблиц и графиков.

В результате выполнения контрольной работы студент обязан:

1.   Научиться решать линейные дифференциальные уравнения численными и символьными методами в рамках пакета компьютерной математики MathCAD.

2.   Ознакомиться с основными алгоритмами существующих компьютерных методов.

3.   Определить точность этих методов путем сравнения результатов, получаемых путем приближенного и аналитического решений.


2. Аналитические методы

Общее решение дифференциального уравнения n-го порядка – неизвестная функция y(t) – содержит n произвольных постоянных. Их можно определить, зная начальные условия, накладываемые на неизвестную функцию и на ее производные вплоть до (n-1)-порядка включительно. Аналитически (в символьном виде) такие уравнения решают классическим и операционным методами.

 

2.1 Классический метод

 

В ограниченном числе случаев вида левой части (1) допускает такое преобразование, которое позволяет найти решение путем непосредственного интегрирования, однако в общем случае порядок решения – иной.

Решение неоднородного дифференциального уравнения (с ненулевой правой частью) является суммой общего решения соответствующего однородного дифференциального уравнения y1(t) и частного решения y2(t) неоднородного дифференциального уравнения (1).

Решение однородного уравнения ищем в виде: . Подстановка его в дифференциальное уравнение приводит к характеристическому алгебраическому уравнению n-ного порядка:

,

которое имеет n корней – . В частном случае отсутствия кратных корней общее решение может быть записано в виде:

,


где Сi – произвольные постоянные, которые находятся из начальных условий.

Имеются правила, позволяющие определить вид y2(t) частного решения в зависимости от вида правой части – функции j(t). Последующая подстановка общего решения в исходное дифференциальное уравнение позволяет найти неопределенные константы Ci в выражении для y1(t).

«Классический» метод анализа процессов в настоящее время используется только в случае простейших систем, поскольку необходимость нахождения частного решения часто приводит к сложным преобразованиям, а также, кроме решения характеристического уравнения дополнительно необходимо составить и решить n уравнений для определения постоянных интегрирования.

 

2.2 Метод операционного исчисления

Суть метода состоит в проведении интегрального преобразования Лапласа функции, входящей в состав дифференциального уравнения, по правилу:

,

где s = a+ j×b – комплексная переменная величина.

Это преобразование сопоставляет функции действительного переменного функцию комплексного переменного. При этом для линейных дифференциальных уравнений существует изоморфизм (взаимно-однозначное соответствие) между функциями-оригиналами, входящими в уравнение, и их изображениями (образами Лапласа).

Преобразование Лапласа можно выполнить, используя блок символьных вычислений MathCAD. Этот же блок позволяет выполнить и обратное преобразование Лапласа, в соответствии с соотношением:

,

где , т. е. интегрирование проводится по прямой, лежащей в плоскости комплексного переменного s и проходящей параллельно мнимой оси jw на расстоянии s от нее, при этом Лаплас образ Y(s) должен иметь особенности слева от этой линии.

Преобразование Лапласа сводит дифференцирование функции оригинала к умножению ее образа на комплексную переменную s, поэтому решение дифференциального уравнения в пространстве оригиналов сводится к решению алгебраического уравнения в пространстве изображений.

Порядок решения дифференциального уравнения с помощью операционного исчисления представляется следующим:

-          выполняя преобразование Лапласа левой и правой части дифференциального уравнения, учитываем начальные условия и переходим от дифференциального уравнения для функции оригинала y(t) к алгебраическому уравнению для Лаплас образа – Y(s) ;

-          решая алгебраическое уравнение, находим в пространстве изображений в явном виде выражение для Y(s);

-          выполняя обратное преобразование мы находим неизвестную функцию y(t).

Все этапы этой процедуры могут быть автоматизированы и выполнены в рамках пакета MathCAD (пример 1).

Следует заметить, что пакет MathCAD далеко не всегда способен выполнить в символьной форме результат обратного Лаплас преобразования. Дело в том, что в блок символьных преобразований пакета заложены правила выполнения данной процедуры для выражений записанных в виде элементарных дробей. Поэтому Лаплас образ предварительно разлагается на элементарные дроби. Однако, если корни полинома в знаменателе представляются в виде комбинации сложных радикалов, то MathCAD «отказывается» работать. В этом случае ему необходимо «помочь» врукопашную выполнив разложения полинома в знаменателе в соответствии с соотношением:

 

,

где s1, s2,…sn – корни уравнения . В примере 1 рассмотрено выполнение обратного преобразования Лапласа и для такого случая.

Рассмотренная методика нахождения аналитического решения дифференциальных уравнений может быть распространена на задачу решения системы дифференциальных уравнений. В этом случае необходимо решить не одно алгебраическое уравнение для Лаплас-образов, а систему алгебраических уравнений с помощью той же процедуры блока решений Given – Find. Отметим, что в отличие от систем компьютерной математики Mathematica 2.2.2 и Maple V R3/R4, которые легко позволяют аналитически решить линейное дифференциальное уравнение с помощью встроенных средств. Система MathCAD предполагает «ручные процедуры» запуска прямого преобразования Лапласа, составления по его результатам алгебраического уравнения и, после его решения, запуска процедуры обратного преобразования Лапласа.



Информация о работе «Методы и алгоритмы компьютерного решения дифференциальных уравнений»
Раздел: Информатика, программирование
Количество знаков с пробелами: 12056
Количество таблиц: 47
Количество изображений: 3

Похожие работы

Скачать
31319
15
25

... при финансовой поддержке государственной научно-технической программы «Физика квантовых и волновых процессов» (проект 1.61) и физического учебно-научного центра «Фундаментальная оптика и спектроскопия». 1. Асимптотическое поведение решений дифференциальных уравнений с малым параметром Многие колебательные системы описываются дифференциальными уравнениями с малым параметром при производных: ...

Скачать
39446
2
12

... пакетах.   Заключение   Результатом выполнения курсового проекта является готовый программный продукт, позволяющий решать задачу Коши для системы дифференциальных уравнений при помощи неявной схемы Адамса 3-го порядка, демонстрирующий возможности численного решения поставленной задачи с заданной степенью точности. Готовый программный продукт может найти широкое применение при решении многих ...

Скачать
103587
0
24

... + 1 надо подставить y = y - 1 end while finish Удаление невидимых линий и поверхностей Задача удаления невидимых линий и поверхностей является одной из наиболее сложных в машинной графике. Алгоритмыудаления невидимых линий и поверхностей служат для определения линий ребер, поверхностей или объемов, которые видимы или невидимы для наблюдателя, находящегося в заданной точке пространства. 3.1 ...

Скачать
57698
75
8

... ^у^е^о ^ с^-^. Итак решение по Ритцу: ^-i-^ Сравнительная таблица имеет вид: Л. 0 0,5 1 1,5 2 у^ 0 -0,275 -0,3571 -0,2758 0 ^г) о -0,2126 -0,3520 -0,3258 0 50 3.6. Об одном подходе к решению нелинейных вариационных задач В отличии от метода Ритца, искомую функцию в двуточечной вариа­ционной задаче зададим в виде: r-^^f^-^^ При этом граничные условия и{а ) = ...

0 комментариев


Наверх