4. Метод композиции
Метод композиции основывается на представлении плотности вероятности fη (x) по формуле полной вероятности:
fη (x)= (27)
Где H(z)=P(ζz)– интегральная функция распределения случайной величины ζ;
P(x/z )- условная плотность вероятности.
Переходя к дискретной форме, интеграл заменяется на сумму и тогда получаем
fη (x)=Pj*fj (x) (28)
где Pj=1(29)
fj(x) -условная плотность вероятности
Таким образом, для любой заданной плотности вероятности ее фигура единичной площади, ограниченной осью x и кривой fη(x), разбивается на произвольное число простых не пересекающихся частей gj (i=1,k),с площадями Pj (j=1,k), (Рис.8)
Рис.8Разбивка плотности вероятности на отдельном участке
fη(x)
g1 (Р1)
g2 (Р2) g3 (Р3)
x
g1 (Р1)
x
Рис. 9 Условные плотности
вероятности
g2 (Р2)
x
g3 (Р3)
x
Условные плотности вероятности имеют вид (Рис.9)
Для полученных условных плотностей вероятности одним из предыдущих методов определяются случайные последовательности, которые в сумме дадут требуемую случайную последовательность с заданной плотностью вероятности.
5. Оценка закона распределения
Для полученной случайной последовательности y1, y2,…,yn с заданным законом распределения необходимо провести оценку соответствия заданного закона распределения, который реализует смоделированный датчик случайных чисел. Поэтому для последовательности y1, y2,…,yn строится статистическая функция распределения
F* (y) (Рис. 10). На этом же графике строится интегральная функция распределения F(y) для заданного закона распределения и производится сопоставление F*(y) и F(y). Согласие закона проверяется по критерию Колмогорова. Для этого вычисляется статистика:
Ди=maxF*(y) - F(y) (30)
Для конечных решений и распределения статистики Ди получены пороговые значения в форме таблиц (Таблица 1.). По этой таблице для заданных объемов последовательности и и значению статистики Ди определяется уровень значимости .
Если гипотеза верна то статистика Ди* имеет в пределе при n распределение Колмогорова и квантили уровня P= (1-2) близки к 1. Это значит, что полученный генератор случайных чисел вырабатывает последовательность с заданным законом распределения. Если значения статистики Ди не попадают в пороговые значения, то такой генератор не годится для пользования.
F(y)
F(y) 1
F*(y)
0.5 Dn {
y
y1 y2 y3 y4 …….yn-1 yn
Рис.10Оценка распределения
III Содержание исследования
Исследование, проводимое в данной работе, заключается в получении программного датчика случайных чисел, пригодного для моделирования случайной последовательности с заданным законом распределения. При этом необходимо разработать алгоритм и программу датчика, а затем исследовать свойства выработанной им последовательности. При проведении исследований необходимо:
1.По двадцати числам (n=20) выведенным на печать построить статистическую функцию распределения F*(y)(рис.10) На этом же графике построить интегральную функцию распределения F(y) для заданного преподавателем закона распределения. Сопоставив значения F*(y)и F(y), вычислить статистику Ди (30).
2. Составить блок- схему и программу для ПЭВМ, в которой следует предусмотреть построение статистического ряда и вычисление статистики Ди по критерию Колмогорова.
3.По таблице пороговых значений статистики Ди произвести оценку распределения.
4. Для полученной последовательности произвести оценку математического ожидания, дисперсии, среднеквадратического отклонения.
Блок- схема генератора
Интерфейс программы:
Листинг программы:
Private Sub Command1_Click()
Dim n As Integer
Dim p1, p2 As Integer
Dim Y() As Variant, X As Double
p1 = 0: p2 = 0: m = 0: d = 0
List1.Clear
Randomize
X = 0.5
n = Val(Text1.Text)
ReDim Y(n) As Variant
For i = 1 To n
X = Rnd(X)
List1.AddItem ("x(" + Str(i) + ")=" + Str(X))
If X < 0.7 Then
p1 = p1 + 1
Y(i) = 2
m = m + Y(i)
List1.AddItem ("y(" + Str(i) + ")=" + Str(Y(i)))
Else
p2 = p2 + 1
Y(i) = 10 * X - 5
m = m + Y(i)
List1.AddItem ("y(" + Str(i) + ")=" + Str(Y(i)))
End If
Next i
List1.AddItem ("кол. точек с вер-ю 0.7: p1=" + Str(p1))
List1.AddItem ("кол. точек с вер-ю 0.3: p2=" + Str(p2))
List1.AddItem ("ВЕРОЯТНОСТИ:")
List1.AddItem (" 0.4<=x<0.7 --- 0" + Str(p1 / n))
List1.AddItem (" 0.7<=x<=1 --- 0" + Str(p2 / n))
m = m / n
List1.AddItem ("мат ожидание = " + Str(m))
For i = 1 To n
d = d + (Y(i) - m) ^ 2
Next i
d = d / (n - 1)
b = Sqr(d)
List1.AddItem ("диссперсия = " + Str(d))
List1.AddItem ("сререднекв откл = " + Str(b))
'построение интегральной функции
Picture1.Scale (-2, 11)-(11, -2)
Picture1.Line (0, -2)-(0, 11)
Picture1.Line (-2, 0)-(11, 0)
Picture1.PSet (-1, 11)
Picture1.Print ("f(x)")
Picture1.PSet (10.5, -0.3)
Picture1.Print ("x")
Picture1.PSet (-0.7, 4)
Picture1.Print ("0.4")
Picture1.PSet (-0.7, 7)
Picture1.Print ("0.7")
Picture1.PSet (-0.7, 10)
Picture1.Print ("1")
Picture1.PSet (2, -0.3)
Picture1.Print ("2")
Picture1.PSet (5, -0.3)
Picture1.Print ("5")
For i = 0 To 11 Step 0.001
If i < 2 Then
l = 4
Else
If i < 5 Then
l = (0.1 * i + 0.5) * 10
Else
l = 10
End If
End If
Picture1.PSet (i, l)
Next i
Picture1.Line (2, 4)-(2, 7)
'построение обратной функции
Picture2.Scale (-2, 11)-(11, -2)
Picture2.Line (0, -2)-(0, 11)
Picture2.Line (-2, 0)-(11, 0)
Picture2.PSet (-1, 11)
Picture2.Print ("x")
Picture2.PSet (10.5, -0.3)
Picture2.Print ("f(x)")
Picture2.PSet (-0.7, 2)
Picture2.Print ("2")
Picture2.PSet (-0.7, 5)
Picture2.Print ("5")
Picture2.PSet (4, -0.3)
Picture2.Print ("0.4")
Picture2.PSet (7, -0.3)
Picture2.Print ("0.7")
Picture2.PSet (10, -0.3)
Picture2.Print ("1")
For i = 4 To 10 Step 0.001
If i < 7 Then
l = 2
Else
l = i - 5
End If
Picture2.PSet (i, l), vbRed
Next i
Picture2.Line (4, 0)-(4, 2), vbRed
Picture2.Line (10, 5)-(10, 11), vbRed
End Sub
... ;…≤ξn . Шаг 3. Нужные статистики вычисляются по формулам Kn+ = max ( - F(xj)); Kn- -= max (F(xj) - ), при 1≤j≤n. Заключение В данной курсовой работе рассмотрены вопросы применения случайных чисел для прикладных задач математики и информатики, рассмотрены методы получения случайных чисел, начиная от самых ранних методов с использованием первых вычислительных машин ...
... в серии опытов сходится по вероятности к рассчитанной теоретически вероятности данного события P(A) = 0.939. Распределение дискретной случайной величины по геометрическому закону распределения Моделирование случайной величины, имеющей геометрический закон распределения: (X=xk) = p(1-p)k где xk = k=0,1,2…, р – определяющий параметр, 0<p<1. Этот закон является дискретным. Составим ...
... - заданная функция: Рисунок 3 – Зависимость y от t Рисунок 4 – Зависимость z от t Заключение Была выполнена работа по моделированию состояния системы непрерывно-стохастической модели на ЭВМ, состояние которой описывается стохастическим дифференциальным уравнением , со следующими параметрами: где и - параметры спектральной плотности, , , и -коэффициенты уравнения, ...
... случайной величины, распределенной по показательному закону, может служить время между появлениями двух последовательных событий простейшего потока. 2.2. Начало алгоритмизации. Для получения двух последовательностей из 50 случайных чисел с показательным и нормальным законами распределения необходимо организовать цикл, который будет выполнятся 50 раз. Внутри цикла будем пользоваться функцией из ...
0 комментариев