4. Метод композиции

Метод композиции основывается на представлении плотности вероятности fη (x) по формуле полной вероятности:

 

fη (x)= (27)

 

Где H(z)=P(ζz)– интегральная функция распределения случайной величины ζ;

P(x/z )- условная плотность вероятности.

Переходя к дискретной форме, интеграл заменяется на сумму и тогда получаем

 

fη (x)=Pj*fj (x) (28)

где Pj=1(29)

fj(x) -условная плотность вероятности

Таким образом, для любой заданной плотности вероятности ее фигура единичной площади, ограниченной осью x и кривой fη(x), разбивается на произвольное число простых не пересекающихся частей gj (i=1,k),с площадями Pj (j=1,k), (Рис.8)


Рис.8Разбивка плотности вероятности на отдельном участке

fη(x)


g11)

g22) g33)

x


g11)

x

Рис. 9 Условные плотности

вероятности


g22)


x


g33)


x

Условные плотности вероятности имеют вид (Рис.9)

Для полученных условных плотностей вероятности одним из предыдущих методов определяются случайные последовательности, которые в сумме дадут требуемую случайную последовательность с заданной плотностью вероятности.

5. Оценка закона распределения

Для полученной случайной последовательности y1, y2,…,yn с заданным законом распределения необходимо провести оценку соответствия заданного закона распределения, который реализует смоделированный датчик случайных чисел. Поэтому для последовательности y1, y2,…,yn строится статистическая функция распределения

F* (y) (Рис. 10). На этом же графике строится интегральная функция распределения F(y) для заданного закона распределения и производится сопоставление F*(y) и F(y). Согласие закона проверяется по критерию Колмогорова. Для этого вычисляется статистика:

Ди=maxF*(y) - F(y) (30)

 

Для конечных решений и распределения статистики Ди получены пороговые значения в форме таблиц (Таблица 1.). По этой таблице для заданных объемов последовательности и и значению статистики Ди определяется уровень значимости  .

Если гипотеза верна то статистика Ди* имеет в пределе при n распределение Колмогорова и квантили уровня P= (1-2) близки к 1. Это значит, что полученный генератор случайных чисел вырабатывает последовательность с заданным законом распределения. Если значения статистики Ди не попадают в пороговые значения, то такой генератор не годится для пользования.

F(y)


F(y) 1

F*(y)


0.5 Dn {

 


y

y1 y2  y3 y4 …….yn-1 yn

 

Рис.10Оценка распределения


III Содержание исследования

Исследование, проводимое в данной работе, заключается в получении программного датчика случайных чисел, пригодного для моделирования случайной последовательности с заданным законом распределения. При этом необходимо разработать алгоритм и программу датчика, а затем исследовать свойства выработанной им последовательности. При проведении исследований необходимо:

1.По двадцати числам (n=20) выведенным на печать построить статистическую функцию распределения F*(y)(рис.10) На этом же графике построить интегральную функцию распределения F(y) для заданного преподавателем закона распределения. Сопоставив значения F*(y)и F(y), вычислить статистику Ди (30).

2. Составить блок- схему и программу для ПЭВМ, в которой следует предусмотреть построение статистического ряда и вычисление статистики Ди по критерию Колмогорова.

3.По таблице пороговых значений статистики Ди произвести оценку распределения.

4. Для полученной последовательности произвести оценку математического ожидания, дисперсии, среднеквадратического отклонения.


Блок- схема генератора


Интерфейс программы:

 

Листинг программы:

 

Private Sub Command1_Click()

Dim n As Integer

Dim p1, p2 As Integer

Dim Y() As Variant, X As Double

p1 = 0: p2 = 0: m = 0: d = 0

List1.Clear

Randomize

X = 0.5

n = Val(Text1.Text)

ReDim Y(n) As Variant

For i = 1 To n

 X = Rnd(X)

 List1.AddItem ("x(" + Str(i) + ")=" + Str(X))

 

 If X < 0.7 Then

p1 = p1 + 1

Y(i) = 2

m = m + Y(i)

List1.AddItem ("y(" + Str(i) + ")=" + Str(Y(i)))

 Else

 p2 = p2 + 1

Y(i) = 10 * X - 5

m = m + Y(i)

List1.AddItem ("y(" + Str(i) + ")=" + Str(Y(i)))

 End If

 

Next i

List1.AddItem ("кол. точек с вер-ю 0.7: p1=" + Str(p1))

List1.AddItem ("кол. точек с вер-ю 0.3: p2=" + Str(p2))

List1.AddItem ("ВЕРОЯТНОСТИ:")

List1.AddItem (" 0.4<=x<0.7 --- 0" + Str(p1 / n))

List1.AddItem (" 0.7<=x<=1 --- 0" + Str(p2 / n))

m = m / n

List1.AddItem ("мат ожидание = " + Str(m))

For i = 1 To n

 d = d + (Y(i) - m) ^ 2

Next i

 d = d / (n - 1)

 b = Sqr(d)

 List1.AddItem ("диссперсия = " + Str(d))

 List1.AddItem ("сререднекв откл = " + Str(b))

'построение интегральной функции

Picture1.Scale (-2, 11)-(11, -2)

Picture1.Line (0, -2)-(0, 11)

Picture1.Line (-2, 0)-(11, 0)

Picture1.PSet (-1, 11)

Picture1.Print ("f(x)")

Picture1.PSet (10.5, -0.3)

Picture1.Print ("x")

Picture1.PSet (-0.7, 4)

Picture1.Print ("0.4")

Picture1.PSet (-0.7, 7)

Picture1.Print ("0.7")

Picture1.PSet (-0.7, 10)

Picture1.Print ("1")

Picture1.PSet (2, -0.3)

Picture1.Print ("2")

Picture1.PSet (5, -0.3)

Picture1.Print ("5")

For i = 0 To 11 Step 0.001

If i < 2 Then

l = 4

Else

If i < 5 Then

l = (0.1 * i + 0.5) * 10

Else

l = 10

End If

End If

Picture1.PSet (i, l)

Next i

Picture1.Line (2, 4)-(2, 7)

'построение обратной функции

Picture2.Scale (-2, 11)-(11, -2)

Picture2.Line (0, -2)-(0, 11)

Picture2.Line (-2, 0)-(11, 0)

Picture2.PSet (-1, 11)

Picture2.Print ("x")

Picture2.PSet (10.5, -0.3)

Picture2.Print ("f(x)")

Picture2.PSet (-0.7, 2)

Picture2.Print ("2")

Picture2.PSet (-0.7, 5)

Picture2.Print ("5")

Picture2.PSet (4, -0.3)

Picture2.Print ("0.4")

Picture2.PSet (7, -0.3)

Picture2.Print ("0.7")

Picture2.PSet (10, -0.3)

Picture2.Print ("1")

For i = 4 To 10 Step 0.001

If i < 7 Then

l = 2

Else

l = i - 5

End If

Picture2.PSet (i, l), vbRed

Next i

Picture2.Line (4, 0)-(4, 2), vbRed

Picture2.Line (10, 5)-(10, 11), vbRed

End Sub


Информация о работе «Моделирование датчиков случайных чисел с заданным законом распределения»
Раздел: Информатика, программирование
Количество знаков с пробелами: 10412
Количество таблиц: 2
Количество изображений: 5

Похожие работы

Скачать
27268
0
2

... ;…≤ξn . Шаг 3. Нужные статистики вычисляются по формулам Kn+ = max ( - F(xj)); Kn- -= max (F(xj) - ), при 1≤j≤n. Заключение В данной курсовой работе рассмотрены вопросы применения случайных чисел для прикладных задач математики и информатики, рассмотрены методы получения случайных чисел, начиная от самых ранних методов с использованием первых вычислительных машин ...

Скачать
11505
0
4

... в серии опытов сходится по вероятности к рассчитанной теоретически вероятности данного события P(A) = 0.939. Распределение дискретной случайной величины по геометрическому закону распределения Моделирование случайной величины, имеющей геометрический закон распределения: (X=xk) = p(1-p)k где xk = k=0,1,2…, р – определяющий параметр, 0<p<1. Этот закон является дискретным. Составим ...

Скачать
13590
0
7

... - заданная функция: Рисунок 3 – Зависимость y от t Рисунок 4 – Зависимость z от t Заключение Была выполнена работа по моделированию состояния системы непрерывно-стохастической модели на ЭВМ, состояние которой описывается стохастическим дифференциальным уравнением , со следующими параметрами: где  и  - параметры спектральной плотности, , ,  и -коэффициенты уравнения, ...

Скачать
21215
0
0

... случайной величины, распределенной по показательному закону, может служить время между появлениями двух последовательных событий простейшего потока. 2.2. Начало алгоритмизации. Для получения двух последовательностей из 50 случайных чисел с показательным и нормальным законами распределения необходимо организовать цикл, который будет выполнятся 50 раз. Внутри цикла будем пользоваться функцией из ...

0 комментариев


Наверх