2. Алгоритм работает слишком медленно, так как полученная на предыдущих итерациях информация не используется для уско­рения поиска.

3. Не существует простого способа расширения симплекса, не требующего пересчета значений целевой функции во всех точках образца. Таким образом, если по какой-либо причине уменьшается (например, если встречается область с узким «оврагом» или «хреб­том»), то поиск должен продолжаться с уменьшенной величиной шага.

  4.1.2. Метод поиска Хука-Дживса.

Метод, разработанный Хуком и Дживсом, является одним из первых алгоритмов, в которых при определении нового направления поиска учитывается информация, полученная на предыдущих итерациях. По существу процедура Хука—Дживса представляет собой комбинацию «исследующего» поиска с циклическим изменением переменных и ускоряющегося поиска по образцу с использованием определенных эвристических правил. Исследующий поиск ориентирован на выявление характера локального поведения целевой функции и определение направлений вдоль «оврагов». Полученная в результате исследующего поиска информация затем используется в процессе поиска по образцу при движении по «оврагам».

Исследующий поиск.

Для проведения исследующего поиска необходимо задать величину шага, которая может быть раз­личной для разных координатных направлений и изменяться в про­цессе поиска. Исследующий поиск начинается в некоторой исходной точке. Если значение целевой функции в пробной точке не превы­шает значения функции в исходной точке, то шаг поиска рассматри­вается как успешный. В противном случае необходимо вернуться в предыдущую точку и сделать шаг в противоположном направлении с последующей проверкой значения целевой функции. После пере­бора всех N координат исследующий поиск завершается. Получен­ную в результате точку называют базовой точкой.

Поиск по образцу.

Поиск по образцу заключается в реализации единственного шага из полученной базовой точки вдоль-прямой, соединяющей эту точку с предыдущей базовой точкой. Новая точка образца определяется в соответствии с формулой

Как только движение по образцу не приводит к уменьшению целе­вой функция, точка  фиксируется в качестве временной базо­вой точки и вновь проводится исследующий поиск. Если в резуль­тате получается точка с меньшим значением целевой функции, чем в точке , то она рассматривается как новая базовая точка . С другой стороны, если исследующий поиск неудачен, необходимо вернуться в точку  и провести исследующий поиск с целью вы­явления нового направления минимизации. В конечном счете, воз­никает ситуация, когда такой поиск не приводит к успеху. В этом случае требуется уменьшить величину шага путем введения неко­торого множителя и возобновить исследующий поиск. Поиск завер­шается, когда величина шага становится достаточно малой. После­довательность точек, получаемую в процессе реализации метода, можно записать в следующем виде:

- текущая базовая точка,

- предыдущая базовая точка,

- точка, построенная при движении по образцу,

- следующая (новая) базовая точка.

Приведенная последовательность характеризует логическую струк­туру поиска по методу Хука — Дживса.

Структура метода поиска Хука — Дживса

Шаг 1 . Определить:

начальную точку  ,

приращения

коэффициент уменьшения шага ,

параметр окончания поиска .

Ш а г 2. ровести исследующий поиск.

Ш а г 3. Был ли исследующий поиск удачным (найдена ли точ­ка с меньшим значением

целевой функции)?

Да: перейти к шагу 5.

Нет: продолжать.

Ш а г 4. Проверка на окончание поиска.

Выполняется ли неравенство ?

Да: прекратить поиск; текущая точка аппроксимирует точку оп­тимума.

Нет: уменьшить приращения по формуле

Перейти к шагу 2.

Ш а г 5. Провести поиск по образцу:

Шаг 6. Провести исследующий поиск, используя  в ка­честве базовой точки;

пусть  полученная в результате точка.

Ш а г 7. Выполняется ли неравенство ?

Да: положить  Перейти к шагу 5.

Нет: перейти к шагу 4.

Пример 6 Поиск по методу Хука — Дживса

Найти точку минимума функции  используя начальную точку .

Решение.

Для того чтобы применить метод прямого поиска .Хука — Дживса, необходимо задать следующие величины:

 векторная величина приращения = ,

коэффициент уменьшения шага = 2,

 параметр окончания поиска = 10-4.

Итерации начинаются с исследующего поиска вокруг точки , которой соответствует значение функции Фиксируя , дадим приращение переменной :

Успех.

Следовательно, необходимо зафиксировать  и дать прираще­ние переменной :

 Успех.

Таким образом, в результате исследующего поиска найдена точка

Поскольку исследующий поиск был удачным, переходим к поиску по образцу:

Далее проводится исследующий поиск вокруг точки , который оказывается удачным при использовании положительных прираще­ний переменных х1 и х2. В результате получаем точку

Поскольку , поиск по образцу следует считать успеш­ным, и  становится новой базовой точкой при следующем про­ведении поиска по образцу. Итерации продолжаются, пока умень­шение величины шага не укажет на окончание поиска в окрестности точки минимума. Последовательные шаги реализации метода показаны на рисунке.

Из примера следует, что метод Хука — Дживса характери­зуется несложной стратегией поиска, относительной простотой вычислений и невысоким уровнем требований к объему памяти ЭВМ, который оказывается даже ниже, чем в случае использования ме­тода поиска по симплексу.


Итерации поиска по методу Хука-Дживса на примере


Информация о работе «Нелинейное программирование»
Раздел: Информатика, программирование
Количество знаков с пробелами: 39846
Количество таблиц: 0
Количество изображений: 5

Похожие работы

Скачать
17494
7
6

... гиперповерхность наивысшего (наименьшего) уровня: f (x1, x2, …, xn) = h. Указанная точка может находиться как на границе области допустимых решений, так и внутри неё. Процесс нахождения решения задачи нелинейного программирования с использованием ее геометрической интерпретации включает следующие этапы: 1.   Находят область допустимых решений задачи, определяемую соотношениями (если она пуста, ...

Скачать
23672
25
23

... все многообразие факторов, имеющих место в реальных системах, т. е. использованию моделей, более адекватных исследуемым явлениям.   Библиографический список 1 Лященко И.Н. Линейное и нелинейное программирования / И.Н.Лященко, Е.А.Карагодова, Н.В.Черникова, Н.З.Шор. – К.: «Высшая школа», 1975, 372 с. 2 Методические указания для выполнения курсового проекта по дисциплине «Прикладная ...

Скачать
38887
29
13

... разрабатываются методы отыскания экстремальных значений целевой функции среди множества ее возможных значений, определяемых ограничениями. Наличие ограничений делает задачи математического программирования принципиально отличными от классических задач математического анализа по отысканию экстремальных значений функции. Методы математического анализа для поиска экстремума функции в задачах ...

Скачать
57698
75
8

... ^у^е^о ^ с^-^. Итак решение по Ритцу: ^-i-^ Сравнительная таблица имеет вид: Л. 0 0,5 1 1,5 2 у^ 0 -0,275 -0,3571 -0,2758 0 ^г) о -0,2126 -0,3520 -0,3258 0 50 3.6. Об одном подходе к решению нелинейных вариационных задач В отличии от метода Ритца, искомую функцию в двуточечной вариа­ционной задаче зададим в виде: r-^^f^-^^ При этом граничные условия и{а ) = ...

0 комментариев


Наверх