Лекция 1. Вводная. Основные понятия и определения

Под экспериментом будем понимать совокупность операций совершаемых над объектом исследования с целью получения информации о его свойствах. Эксперимент, в котором исследователь по своему усмотрению может изменять условия его проведения, называется активным экспериментом. Если исследователь не может самостоятельно изменять условия его проведения, а лишь регистрирует их, то это пассивный эксперимент.

Важнейшей задачей методов обработки полученной в ходе эксперимента информации является задача построения математической модели изучаемого явления, процесса, объекта. Ее можно использовать и при анализе процессов и при проектировании объектов. Можно получить хорошо аппроксимирующую математическую модель, если целенаправленно применяется активный эксперимент. Другой задачей обработки полученной в ходе эксперимента информации является задача оптимизации, т.е. нахождения такой комбинации влияющих независимых переменных, при которой выбранный показатель оптимальности принимает экстремальное значение.

Опыт – это отдельная экспериментальная часть.

План эксперимента – совокупность данных определяющих число, условия и порядок проведения опытов.

Планирование эксперимента – выбор плана эксперимента, удовлетворяющего заданным требованиям, совокупность действий направленных на разработку стратегии экспериментирования (от получения априорной информации до получения работоспособной математической модели или определения оптимальных условий). Это целенаправленное управление экспериментом, реализуемое в условиях неполного знания механизма изучаемого явления.

В процессе измерений, последующей обработки данных, а также формализации результатов в виде математической модели, возникают погрешности и теряется часть информации, содержащейся в исходных данных. Применение методов планирования эксперимента позволяет определить погрешность математической модели и судить о ее адекватности. Если точность модели оказывается недостаточной, то применение методов планирования эксперимента позволяет модернизировать математическую модель с проведением дополнительных опытов без потери предыдущей информации и с минимальными затратами.

Цель планирования эксперимента – нахождение таких условий и правил проведения опытов при которых удается получить надежную и достоверную информацию об объекте с наименьшей затратой труда, а также представить эту информацию в компактной и удобной форме с количественной оценкой точности.

Пусть интересующее нас свойство (Y) объекта зависит от нескольких (n) независимых переменных (Х1, Х2, …, Хn) и мы хотим выяснить характер этой зависимости - Y=F(Х1, Х2, …, Хn), о которой мы имеем лишь общее представление. Величина Y – называется “отклик”, а сама зависимость Y=F(Х1,Х2, …, Хn) – “функция отклика”.

Отклик должен быть определен количественно. Однако могут встречаться и качественные признаки Y. В этом случае возможно применение рангового подхода. Пример рангового подхода - оценка на экзамене, когда одним числом оценивается сложный комплекс полученных сведений о знаниях студента.

Независимые переменные Х1, Х2, …, Хn – иначе факторы, также должны иметь количественную оценку. Если используются качественные факторы, то каждому их уровню должно быть присвоено какое-либо число. Важно выбирать в качестве факторов лишь независимые переменные, т.е. только те которые можно изменять, не затрагивая другие факторы. Факторы должны быть однозначными. Для построения эффективной математической модели целесообразно провести предварительный анализ значимости факторов (степени влияния на функцию), их ранжирование и исключить малозначащие факторы.

Диапазоны изменения факторов задают область определения Y. Если принять, что каждому фактору соответствует координатная ось, то полученное пространство называется факторным пространством. При n=2 область определения Y представляется собой прямоугольник, при n=3 – куб, при n >3 - гиперкуб.

При выборе диапазонов изменения факторов нужно учитывать их совместимость, т.е. контролировать, чтобы в этих диапазонах любые сочетания факторов были бы реализуемы в опытах и не приводили бы к абсурду. Для каждого из факторов указывают граничные значения

, i=1,... n.

Регрессионный анализ функции отклика предназначен для получения ее математической модели в виде уравнения регрессии

,

где В1, …, Вm – некоторые коэффициенты; е – погрешность.

Среди основных методов планирования, применяемых на разных этапах исследования, используют:

планирование отсеивающего эксперимента, основное значение которого выделение из всей совокупности факторов группы существенных факторов, подлежащих дальнейшему детальному изучению;

планирование эксперимента для дисперсионного анализа, т.е. составление планов для объектов с качественными факторами;

планирование регрессионного эксперимента, позволяющего получать регрессионные модели (полиномиальные и иные);

планирование экстремального эксперимента, в котором главная задача – экспериментальная оптимизация объекта исследования;

планирование при изучении динамических процессов и т.д.

Инициатором применения планирования эксперимента является Рональд А. Фишер, другой автор известных первых работ – Френк Йетс. Далее идеи планирования эксперимента формировались в трудах Дж. Бокса, Дж. Кифера. В нашей стране - в трудах Г.К. Круга, Е.В. Маркова и др.

В настоящее время методы планирования эксперимента заложены в специализированных пакетах, широко представленных на рынке программных продуктов, например: StatGrapfics, Statistica, SPSS, SYSTAT и др.

Представление результатов экспериментов

При использовании методов планирования эксперимента необходимо найти ответы на 4 вопроса:

Какие сочетания факторов и сколько таких сочетаний необходимо взять для определения функции отклика?

Как найти коэффициенты В0, В1, …, Bm?

Как оценить точность представления функции отклика?

Как использовать полученное представление для поиска оптимальных значений Y?

Геометрическое представление функции отклика в факторном пространстве Х1, Х2, …, Хn называется поверхностью отклика (рис. 1).


Рис. 1. Поверхность отклика

Если исследуется влияние на Y лишь одного фактора Х1, то нахождение функции отклика - достаточно простая задача. Задавшись несколькими значениями этого фактора, в результате опытов получаем соответствующие значения Y и график Y =F(X) (рис. 2).

Рис. 2. Построение функции отклика одной переменной по опытным данным

По его виду можно подобрать математическое выражение функции отклика. Если мы не уверены, что опыты хорошо воспроизводятся, то обычно опыты повторяют несколько раз и получают зависимость с учетом разброса опытных данных.

Если факторов два, то необходимо провести опыты при разных соотношениях этих факторов. Полученную функцию отклика в 3х-мерном пространстве (рис. 1) можно анализировать, проводя ряд сечений с фиксированными значениями одного из факторов (рис. 3). Вычлененные графики сечений можно аппроксимировать совокупностью математических выражений.

Рис. 3. Сечения поверхности отклика при фиксированных откликах (а) и переменных (б,в).

При трех и более факторах задача становится практически неразрешимой. Если и будут найдены решения, то использовать совокупность выражений достаточно трудно, а часто и не реально.

Например, пусть необходимо исследовать влияние U, f и Rr на Мп и P2 асинхронного двигателя (АД) (рис. 4).

Рис. 4. Исследование влияния U, f и Rr на Мп и P2 АД

Если в диапазоне изменения каждого фактора взять хотя бы по пять точек

то для того чтобы выполнить опыты при всех возможных сочетаниях значений факторов (их три) необходимо выполнить 53=125 опытов и сформировать по 52=25 кривых для каждой из двух функций отклика. Если мы хотим хотя бы продублировать опыты чтобы снизить погрешность, то число опытов пропорционально возрастает, поэтому произвольное выполнение опытов при числе факторов более двух и использование их результатов - практически нереально.


Лекция 2. Разложение функции отклика в степенной ряд, кодирование факторов

 

Если заранее не известно аналитическое выражение функции отклика, то можно рассматривать не саму функцию, а ее разложение, например в степенной ряд в виде полинома

Y=В0 + B1Х1 + … + BnХn + В12Х1Х2 + … Вnn-1ХnХn-1 + В11Х12 + … + ВnnXn2 +….

Разложение в степенной ряд функции возможно в том случае, если сама функция является непрерывной и гладкой. На практике обычно ограничиваются числом членов степенного ряда и аппроксимируют функцию полиномом некоторой степени.

Факторы могут иметь разные размерности (А, В, Вт, об/мин) и резко отличаться количественно. В теории планирования эксперимента используют кодирование факторов.

Рис. 5. Пространство кодированных факторов

Эта операция заключается в выборе нового масштаба для кодированных факторов (рис. 5), причем такого, чтобы минимальное значение кодированных факторов соответствовало “-1”, а максимальное значение “+1”, а также в переносе начала координат в точку с координатами Х1ср, Х2ср, …, Хnср

.

Текущее значение кодированного фактора

,

где Хi – именованное (абсолютное) значение фактора; xi – кодированное значение фактора; Xicp -Ximin =Ximax-Xicp - интервал варьирования фактора.

Граница совместимости факторов указана на рис. 5 в виде кривой линии.

Если фактор изменяется дискретно, например он является качественным, то каждому уровню этого кодированного фактора присваиваются числа в диапазоне от +1 до –1. Так при двух уровнях это +1 и –1, при трех уровнях +1, 0, -1 и т.д.

Функция отклика может быть выражена через кодированные факторы Y=f(x1,…, хn) и записана в полиномиальном виде

Y=b0+b1х1+b2х2+…+bnхn+b12х1х2+…+bnn-1хn-1хn+b11х12+ …+bnnхn2+….

Очевидно, что , но

Y=F(X1,…, Xi,…, Xn) = f(x1,… xi,…, хn).

Для полинома, записанного в кодированных факторах, степень влияния факторов или их сочетаний на функцию отклика определяется величиной их коэффициента bi. Для полинома в именованных факторах величина коэффициента Вi еще не говорит однозначно о степени влияния этого фактора или их сочетаний на функцию отклика.

Степенной вид полинома может быть записан в более компактной форме

.

При определении общего числа членов степенного ряда количество парных сочетаний для n факторов в полиноме, тройных сочетаний, i-ных сочетаний при n>i находится по соотношению

.

Например, для набора четырех чисел (n=4) - 1, 2, 3, 4 число тройных сочетаний составляет

Если считать, что существует фактор х0 всегда равный 1, то

.

Если дополнительно все двойные, тройные и т.д. сочетания факторов, а также квадраты факторов и все соответствующие им коэффициенты обозначить через хi и bi, для i=n+1, …, m, то степенной ряд можно записать в виде

.

Здесь m+1 общее число рассматриваемых членов степенного ряда.

Для линейного полинома с учетом всех возможных сочетаний факторов

.

Полный квадратичный полином выглядит следующим образом:

,

где х0=1, х3=х1х2, х4=х12, х5=х22, b3=b12, b4=b11, b5=b22.

Матричные преобразования при обработке результатов эксперимента

При матричной записи результатов различных N опытов для полиномиального представления результата будем иметь ; Х - матрица сочетаний факторов.

N строк

m+1 столбец

Здесь 0,1, …,i,…, m – номера членов уравнения; 1,…,U,…,N … – номера опытов. Матрица Х - прямоугольная, содержащая m + 1 столбец и N строк.

Если учесть, что в матрице Х элементы , то матрицу Х можно записать

.

Домножим левую и правую часть этого уравнения на одну и туже матрицу Xt – транспонированную матрицу Х

.

Транспонированная матрица – это матрица, у которой по отношению к исходной столбцы и строки поменяны местами.

строка

N столбцов

матрица, получившаяся в результате произведения транспонированной матрицы на исходную. Она является квадратной матрицей, содержащей m +1 строку и m + 1 столбец.

.


Для того чтобы получить в общем виде матрицу-столбец коэффициентов В необходимо домножить обе части последнего матричного уравнения слева на матрицу С-1 – матрицу обратную матрице С.

.

Обратная матрица строится так (используется процедура обращения матрицы), что при умножении ее на исходную матрицу получается единичная матрица – Е, у которой на главной диагонали расположены 1, а вне ее - 0.

.

Окончательно в общем виде матрица-столбец коэффициентов полинома

.

Рассмотрим в качестве простого примера полином в виде

формируемого по результатам N опытов.

;

;

.

;

Откуда решение системы относительно коэффициентов b0 и b1

,

.


Этот результат полностью совпадает с соотношениями для такого же полинома при использовании метода наименьших квадрантов, где используется численный показатель минимальности суммы квадрантов отклонений во всех N опытах. Следовательно, построенный таким образом полином будет проходить самым ближайшим образом к результатам эксперимента.


Лекция 3. Ортогональное планирование эксперимента

Структура матрицы С играет важную роль в реализации алгоритма определения коэффициентов аппроксимирующего полинома. Структура матрицы С зависит от выбора значений факторов в N опытах. Поэтому желательно особым образом выбирать значения факторов в опытах.

Элемент Сii на главной диагонали матрицы С (i-тая строка, i-тый столбец) представляется суммой квадратов значений i-того столбца сочетаний факторов матрицы Х в N опытах

Элементы матрицы симметрично расположенные относительно главной диагонали равны между собой, то есть матрица С - симметричная.

где первый индекс указывает номер столбца матрицы Х, второй индекс - номер строки.

При этом

Чтобы существовала матрица С-1, матрица С размера (1+m; 1+m) должна быть невырожденной, то есть ее определитель должен быть отличен от нуля. Это условие выполняется, если все m+1 столбцов матрицы Х линейно независимы. Кроме того, необходимо, чтобы число различных сочетаний факторов в матрице Х (число опытов N) должно быть не меньше чем m+1. Это условие исходит из того, что для определения m+1 коэффициента полинома необходимо не менее m+1 уравнений (опытов).

Полученные коэффициенты B позволяют сформировать уравнение функции отклика при m+1 членах уравнения. Если точность этого уравнения оказалась недостаточной, то требуется взять уравнение с большим числом членов и начать все заново так как все коэффициенты B оказываются зависимыми друг от друга. Это возникает при использовании пассивного эксперимента. Однако если целенаправленно использовать активный эксперимент и особым образом построить матрицу сочетаний факторов в опытах Х, использовать планирование эксперимента, то коэффициенты полинома определяются независимо друг от друга.

Стратегия применения планов заключается в принципе постепенного планирования – постепенного усложнения модели. Начинают с простейшей модели, находятся для нее коэффициенты, определяется ее точность. Если точность не удовлетворяет, то планирование и модель постепенно усложняются.

Задача планирования заключается в том как нужно строить матрицу Х, чтобы матрица С легко обращалась и коэффициенты B определялись независимо друг от друга. Эти требования выполняется если матрица С является диагональной, то есть все элементы расположенные не на главной диагонали матрицы равны нулю

;

или

.

Тогда обратная матрица определяется как

.

В этом случае система уравнений распадается на m+1 независимых уравнения и коэффициенты полинома определяются как

Если учесть, что Сii определяется как сумма квадратов значений факторов

,

то коэффициенты определяются как

Требование выполнения условия заключается в выполнении условия

,

где i, j - номера столбцов в матрице Х; ; ; при

Каждый столбец матрицы Х можно представить в виде вектора

если ,

то это означает, что скалярное произведение двух векторов Хi и Хj равняется нулю, то есть векторы Хi и Хj - ортогональны.

Так как любое скалярное произведение двух различных столбцов в матрице Х должно быть равно нулю, то это условие называется условием ортогональности матрицы Х, а соответствующее планирование эксперимента (определение сочетаний факторов) называется ортогональным планированием.

Для ортогонального планирования при учете того что

.

Таким образом, при ортогональном планировании сумма элементов любого столбца матрицы Х, кроме первого столбца должно быть равна нулю. Это правило используется при построении плана эксперимента, то есть при определении каким образом нужно менять значения факторов в опытах. Это правило показывает, что в ортогональном планировании при четном числе уровней, на которых фиксируется каждый фактор, то эти уровни должны быть симметрично расположены относительно центральной точки х=0, при нечетном числе уровней должна использоваться и центральная точка (рис.6).

Кроме свойства ортогональности план может обладать свойствам насыщенности, рототабельности и др. План является насыщенным, если общее число опытов N равняется числу неизвестных коэффициентов полинома m+1.

Рис. 6. Выбор уровней варьирования при ортогональном планировании

План называется рототабельным, если дисперсия отклика одинакова на одном расстоянии от центра плана при любом направлении в факторном пространстве. В упрощенном виде это означает, что все точки плана лежат на окружности (сфере, гиперсфере).


Лекция 4. Планы полного факторного эксперимента 2n (планы ПФЭ 2n)

Планы ПФЭ 2n являются простейшими планами первого порядка. Основание 2 означает, что принято два уровня варьирования, на которых фиксируются факторы. n – число факторов.

Для плана ПФЭ 22 число факторов равно двум (n=2) и число уровней фиксирования факторов также 2. Значения кодированных факторов выбираются в виде +1 и –1. Полное число возможных сочетаний значений n факторов (число опытов, а значит и число строк плана) N=22=4. Составляется план, в котором число столбцов факторов и их сочетаний равняется числу членов уравнения. Так для уравнения

План ПФЭ 22 для этого уравнения представляется в следующем виде

В первый столбец (i=0) во все четыре ячейки заносятся +1. Во второй столбец (i=1) заносятся единицы с чередующими знаками (начинаем с -1). В этом случае сумма элемента столбца равняется нулю. Третий столбец заполняем единицами с чередующимися через 2 элемента знаками. Сумма элементов также равняется нулю. Геометрическое отображение плана ПФЭ 22 с указанием номеров точек плана в факторном пространстве представлено на рис. 7. Точки плана располагаются в вершинах квадрата.

Рис. 7. Геометрическое отображение плана ПФЭ 22 в факторном пространстве

Элементы столбцов соответствующих произведениям факторов получаются путем перемножения элементов предыдущих столбцов. Такое правило позволяет гарантировать, что мы не пропустили ни одного возможного сочетания факторов в опытах и в то же время не будет повторений одинаковых сочетаний. Последние два столбца факторов, соответствующие квадратам факторов, состоят только из +1. Столбцы, обведенные утолщенной рамкой, образуют план эксперимента. Столбец х1х2, не обведенный утолщенной рамкой, при проведении опытов носит вспомогательный характер.

Особенности плана ПФЭ 22:

1. Различных столбцов в таблице получилось лишь четыре. Столбцы, соответствующие квадратам факторов неотличимы от столбца х0 - это общий результат для плана ПФЭ 2n. Это не позволяет определить отдельно коэффициенты при квадратах факторов. Поэтому планы ПФЭ 2n называют планами первого порядка. Для определения коэффициентов при квадратах факторов используют планы второго порядка. В дальнейшем в планах ПФЭ 2n столбцы квадратов факторов изображаться не будут.

2. Число различных столбцов равняется числу различных сочетаний факторов, то есть числу строк плана - числу опытов N. Это тоже общий результат для этих планов, то есть с помощью планов ПФЭ 2n можно определить все коэффициенты линейного полинома со всеми возможными сочетаниями факторов, включая коэффициенты b12…n , отражающие максимальное взаимодействие факторов вида х1х2…хn.


Информация о работе «Основные понятия и планирование эксперимента»
Раздел: Информатика, программирование
Количество знаков с пробелами: 43750
Количество таблиц: 1
Количество изображений: 33

Похожие работы

Скачать
30551
0
1

... это процедура выбора числа и условий проведения опытов, необходимых и достаточных для решения поставленной задачи с требуемой точностью[2, с. 14]. Принципы, положенные в основу теории планирования эксперимента, направлены на повышение эффективности экспериментирования, т.е. - стремление к минимизации общего числа опытов; - одновременное варьирование всеми переменными, определяющими процесс, по ...

Скачать
116751
7
18

... «Социальное сознание» (Social Cognition) 1. Самоузнавание в зеркале 2. «Перемена ролей» 3. Преднамеренный обман В этой главе приводятся наиболее известные методы изучения тех форм рассудочной деятельности животных, которые связаны с экстренным улавливанием принципа задачи (!) и экстренной реорганизацией независимых навыков (И). Решение на основе выявления общего алгоритма при многократном ...

Скачать
203260
0
0

... вербальных (словесных) и образных компонентов в процессах за поминания и мышления. Эта психология возникла под определенным влиянием теоретико-информационного подхода. Основное понятие когнитивной психологии - «схема». Она представляет собой имеющейся в голове человека план сбора и программу переработки информации об объектах и событиях. Восприятие, память, мышление и другие познавательные ...

Скачать
57418
1
0

... — развитие под влиянием ближайшего окружения ребенка) пересекаются, т.е. происходит конвергенция. Современные представления о соотношении биологического и социального, принятые в отечественной психологии, в основном, базируются на положениях Л.С. Выготского. Л.С. Выготский подчеркивал единство наследственных и социальных моментов в процессе развития. Наследственность присутствует в развитии всех ...

0 комментариев


Наверх