Рис. 15. Радиус окружности (сферы), на которой лежат точки плана ПФЭ 2n при диапазоне варьирования факторов от –1 до +1:
а) - n=1, ;
б) - n=2, ;
в) - n=3,
.
Таким образом, при построении РОЦКП с ядром из плана ПФЭ 2n плечо “звездных” точек определяется числом факторов
.
Раннее при определении параметров ортогонального композиционного плана второго порядка с ядром из плана ПФЭ 2n было получено
,
где - число точек плана ПФЭ,
- полное число точек композиционного плана второго порядка,
- константа преобразования элементов столбцов, соответствующих квадратам факторов.
В этом случае для РОЦКП число наблюдений в центре плана
.
Если n0 не целое, то при практическом построении плана его округляют до целого, но свойство ортогональности плана нарушается.
Параметры РОЦКП в зависимости от числа факторов
В [1] без вывода для РОЦКП рекомендуется принимать
.
Тогда
.
Параметры РОЦКП по [1]
Пример рототабельного ортогонального центрально-композиционного плана для n = 2.
Параметры плана:
Нет необходимости проводить восемь раз (точки с 9 по 16) опыты в центре плана. Достаточно провести этот опыт один раз и записать результат во все восемь строк. Строки сокращать нельзя, так как нарушается свойство ортогональности, и коэффициенты полинома будут определены неверно.
Коэффициенты квадратичного полинома рассчитаются, как и ранее.
Использован рассмотренный ранее план ПФЭ 22 с добавленными опытами 5-16.
,
, ,
,
,
.
Полином принимает вид
.
Рассчитанные значения функции и расхождения с опытными данными представлены в предпоследнем и последнем столбцах плана.
Ранее для ОЦКП, при несколько отличающейся поверхности функции, был получен близкий полином в виде
.
Для n=2 число членов квадратичного полинома составляет шесть. В ОЦКП и РОЦКП необходимо провести девять отличающихся опытов при пяти уровнях варьирования факторов. Поэтому ОЦКП и РОЦКП - ненасыщенные планы. Такое число экспериментальных точек может быть использовано для построения, например, кубичных полиномов.
Лекция 9. Планы второго порядка с единичной областью планирования
Так как ОЦКП и РОЦКП - композиционные планы, то при естественной области планирования “звездные” точки могут выходить за пределы единичного гиперкуба и единичного гипершара. Для вписывания плана в область единичного гипершара необходимо изменить значение факторов путем умножения их на коэффициент
.
Так при ,
.
Значение факторов в ОЦКП и РОЦКП при переходе от естественной области планирования к единичному гипершару, при n = 2.
Могут использоваться рототабельные планы с точками плана в вершинах других, кроме квадрата (куба, суперкуба), правильных многогранников, вписанных в область единичного круга (шара, гипершара). В рототабельном плане на основе N0-угольника присутствуют N0 отличающихся точек на окружности, с радиусом R1=1, и n0 совпадающих точек в центре плана, с радиусом R2=0. При n=2 для квадратичного полинома при шести его членах число отличающихся точек плана должно быть не менее шести. В планах на основе пятиугольника (шестиугольника или семиугольника) присутствуют 6 (7 или 8) отличающихся точек, что меньше чем в ОЦКП и РОЦКП, у которых 9 отличающихся точек. При соответствующем выборе многоугольника можно сформировать насыщенный рототабельный план второго порядка. Значения факторов в точках плана определяются типом многоугольника.
Рототабельный план на основе правильного многоугольника при n=2.
Константа преобразования элементов столбцов, соответствующих квадратам факторов, для всех подобных планов составляет
.
Смотри, например, для столбцы i= 1 или 2 приведенного плана.
Соотношение может быть определено из уравнения выполнения условия ортогональности столбцов и
.
После несложных преобразований оно сводится к требованию
,
что выполняется при условии в таких планах
и следовательно N0=n0=0,5N .
Таким образом число точек в центре плана для всех подобных планов равно числу точек на поверхности единичного гипершара и определяется типом использованного многогранника.
Константа преобразования для всех подобных планов составляет а=0,25.
Например, в рототабельном плане при n=2 на основе правильного шестиугольника присутствуют 7 отличающихся точек: N0=6 точек на единичной окружности и n0=6 совпадающих точек в центре плана (рис. 16).
Рис. 16. Рототабельный план при n =2 на основе правильного шестиугольника
Здесь при построении плана первый фактор варьируется на пяти уровнях, а второй – на трех уровнях.
Рототабельный план при n=2 на основе шестиугольника
Существуют рототабельные планы, где оба радиуса не нулевые. При этом количество точек на каждой поверхности и отношение радиусов связаны.
Числа точек окружностей рототабельного плана и отношение их радиусов
Пример такого плана при n=2, N0=8, n0=6, R2 / R1=0,25
Рис. 17. Рототабельный план с двумя невырожденными окружностями.
... это процедура выбора числа и условий проведения опытов, необходимых и достаточных для решения поставленной задачи с требуемой точностью[2, с. 14]. Принципы, положенные в основу теории планирования эксперимента, направлены на повышение эффективности экспериментирования, т.е. - стремление к минимизации общего числа опытов; - одновременное варьирование всеми переменными, определяющими процесс, по ...
... «Социальное сознание» (Social Cognition) 1. Самоузнавание в зеркале 2. «Перемена ролей» 3. Преднамеренный обман В этой главе приводятся наиболее известные методы изучения тех форм рассудочной деятельности животных, которые связаны с экстренным улавливанием принципа задачи (!) и экстренной реорганизацией независимых навыков (И). Решение на основе выявления общего алгоритма при многократном ...
... вербальных (словесных) и образных компонентов в процессах за поминания и мышления. Эта психология возникла под определенным влиянием теоретико-информационного подхода. Основное понятие когнитивной психологии - «схема». Она представляет собой имеющейся в голове человека план сбора и программу переработки информации об объектах и событиях. Восприятие, память, мышление и другие познавательные ...
... — развитие под влиянием ближайшего окружения ребенка) пересекаются, т.е. происходит конвергенция. Современные представления о соотношении биологического и социального, принятые в отечественной психологии, в основном, базируются на положениях Л.С. Выготского. Л.С. Выготский подчеркивал единство наследственных и социальных моментов в процессе развития. Наследственность присутствует в развитии всех ...
0 комментариев