8.2 Определение площадей фигур, ограниченных непрерывными линиями

 

Площадь криволинейной трапеции, ограниченной графиком функции f(x), отрезком [a,b] на оси Ox и двумя вертикалями х = а и х = b, a < b, определяется по формуле: .

Пример. Нахождение площади фигуры, ограниченной линиями f(x) = 1 – x2 и y = 0.

Рис. 6.5. Нахождение площади фигуры, ограниченной линиями f(x) = 1 – x2 и y = 0

Площадь фигуры, заключенной между графиками функций f1(x) и f2(x)и прямыми х = а и х = b, вычисляется по формуле:

!

Внимание. Чтобы избежать ошибок при вычислении площади, разность функций надо брать по модулю. Таким образом, площадь будет всегда положительной величиной.

Пример. Нахождение площади фигуры, ограниченной линиями и . Решение представлено на рисунке 6.6.

1.         Строим график функций.

2.         Находим точки пересечения функций с помощью функции root. Начальные приближения определим по графику.

3.         Найденные значения x подставляем в формулу  как пределы интегрирования.

  8.3 Построение кривых по заданным точкам

 

Построение прямой, проходящей через две заданные точки

Для составления уравнения прямой, проходящей через две точки А(x0,y0) и B(x1,y1), предлагается следующий алгоритм:

1.         Прямая задается уравнением y = ax + b,

где a и b — коэффициенты прямой, которые нам требуется найти.

Подставляем в это уравнение заданные координаты точек и получаем систему:

2.         Данная система является линейной. В ней две неизвестные переменные: a и b. Систему можно решить матричным способом.

Пример. Построение прямой, проходящей через точки А(–2,–4) и В(5,7).

Подставим в уравнение прямой координаты данных точек и получим систему:

Решение этой системы в MathCAD представлено на рисунке 6.7.

Рис. 6.7.Решение системы

В результате решения системы получаем: а = 1.57, b = –0.857. Значит, уравнение прямой будет иметь вид: y = 1.57x – 0.857. Построим эту прямую (рис. 6.8).

Рис. 6.8. Построение прямой

Построение параболы, проходящей через три заданные точки

Для построения параболы, проходящей через три точки А(x0,y0), B(x1,y1) и C(x2,y2), алгоритм следующий:

1.         Парабола задается уравнением


y = ax2 + bх + с, где

а, b и с — коэффициенты параболы, которые нам требуется найти.

Подставляем в это уравнение заданные координаты точек и получаем систему:

.

2.         Данная система является линейной. В ней три неизвестные переменные: a, b и с. Систему можно решить матричным способом.

3.         Полученные коэффициенты подставляем в уравнение и строим параболу.

Пример. Построение параболы, проходящей через точки А(–1,–4), B(1,–2) и C(3,16).

Подставляем в уравнение параболы заданные координаты точек и получаем систему:

Решение этой системы уравнений в MathCAD представлено на рисунке 6.9.

Рис. 6.9. Решение системы уравнений


В результате получены коэффициенты: a = 2, b = 1, c = –5. Получаем уравнение параболы: 2x2 +x –5 = y. Построим эту параболу (рис. 6.10).

Рис. 6.10. Построение параболы

Построение окружности, проходящей через три заданные точки

Для построения окружности, проходящей через три точки А(x1,y1), B(x2,y2) и C(x3,y3), можно воспользоваться следующим алгоритмом:

1.         Окружность задается уравнением

,

где x0,y0 — координаты центра окружности;

R — радиус окружности.

2.         Подставим в уравнение окружности заданные координаты точек и получим систему:

.

Данная система является нелинейной. В ней три неизвестные переменные: x0, y0 и R. Система решается с применением вычислительного блока Given – Find.

Пример. Построение окружности, проходящей через три точки А(–2,0), B(6,0) и C(2,4).

Подставим в уравнение окружности заданные координаты точек и получим систему:

Решение системы в MathCAD представлено на рисунке 6.11.

Рис. 6.11. Решение системы

В результате решения системы получено: x0 = 2, y0 = 0, R = 4. Подставим полученные координаты центра окружности и радиус в уравнение окружности. Получим: . Выразим отсюда y и построим окружность (рис. 6.12).

Рис. 6.12. Построение окружности


Информация о работе «Пособие MathCAD»
Раздел: Информатика, программирование
Количество знаков с пробелами: 35653
Количество таблиц: 5
Количество изображений: 25

Похожие работы

Скачать
35616
0
30

... – матрица проводимостей, обратная матрице сопротивлений ветвей. Если в функции fk и jk входят производные токов и напряжений, то процессы в этой линейной или нелинейной электрической цепи будут характеризоваться системой, соответственно, линейных или нелинейных дифференциальных уравнений. При отсутствии производных в функциях fk и jk процессы в этой линейной или нелинейной электрической цепи ...

Скачать
15482
0
10

... один или несколько параметров. Параметры могут иметь численное значение, быть константой, ранее определенной переменной или математическим выражением, возвращающим численное значение. Рис.4. Окно выбора функции 2. Построение графика функции одного аргумента   В Mathcad очень просто строить различные графики, которые в ряде случаев позволяют лучше понять особенности различных функциональных ...

Скачать
53346
1
3

... системы электронных учебных материалов на основе технологии конструирования ЭУМ в среде MathCAD Происходит формирование умений и навыков конструирования электронных учебных материалов в среде MathCAD на творческом уровне В системе профессиональной подготовки учителей математики, физики, информатики недостаточно отражены подходы к созданию и применению электронных учебных материалов с ...

Скачать
90598
2
0

... , которая состоялась 22 февраля 1995 года, обсуждался ход реализации программы информатизации образования на 1994-1995 гг. Был рассмотрен вопрос о совершенствовании организации обучения информатике в общеобразовательной школе на современном этапе. Коллегия постановила признать целесообразной необходимость выделения нескольких этапов в овладении основами информатики и формировании информационной ...

0 комментариев


Наверх