1.4.2 Основы асинхронной последовательной связи
Говоря о передаче данных, мы интересуемся передачей байтов данных от одного устройства к другому, например, от персонального компьютера к модему или к последовательному принтеру. Если мы имеем восемь линий между двумя устройствами, то мы можем назначить каждой линии бит и послать сразу один байт данных. Это будет параллельная передача. Таким образом работает параллельный порт персонального компьютера, кроме того, в дополнение к восьми линиям данных имеются другие сигнальные линии, оказывающие помощь в передаче данных.
С другой стороны, если мы имеем одну линию для передачи сигналов, то необходимо посылать каждый байт данных последовательно, по одному биту. Более того, мы может посылать данные синхронно, таким образом, что каждый байт посылается в ранее определенное время, или асинхронно со скоростью, которую предварительно определять необязательно.
Последовательная связь дешевле, чем параллельная, так как требует меньше линий передачи данных – минимум две для двусторонней связи. Кроме того режим асинхронной передачи оказывает значительно меньшее воздействие на аппаратуру ввиду того, что не требуется дополнительное специальное оборудование для поддержки синхронизации между передатчиком и приемником.
Таким образом, асинхронная последовательная связь является предпочтительным решением ввиду низкой стоимости и простоты используемых аппаратных средств. Конечно, в этом режиме передачи мы должны преобразовывать каждый байт данных в серию битов и указывать приемнику начало и конец каждого байта.
Предположим, что мы умеем преобразовывать каждый байт в поток единиц и нулей, то есть биты, которые могут быть переданы через среду связи. В самом деле, универсальный асинхронный приемопередатчик, как мы увидим в следующем разделе, выполняет точно такую же функцию. Обычно, в то время как линия находится в режиме ожидания, для демонстрации того, что линия в порядке, по ней передается единица, обозначая незанятость линии. С другой стороны, когда линия находится в состоянии логического нуля, говорится, что она стоит в режиме выдерживания интервалов. Таким образом, логические единица и ноль рассматриваются, соответственно, как MARK и SPACE.
В асинхронной связи изменение условия состояния линии с MARK на SPACE означает начало символа). Это называется стартовым битом. За стартовым битом следует комбинация битов, представляющая символ, и затем бит контроля четности. Наконец, линия переходит в состояние ожидания MARK, которая представляет собой стоповый бит и означает конец текущего символа. Число битов, используемых для представления символа, называется длиной слова и обычно бывает равно семи или восьми. Контрольный бит используется для выполнения элементарной проверки на наличие ошибки.
Рис. 1.4. Представление в асинхронной последовательной связи формата одиночного символа. A‑длительность 1 бита; B-MARK или 1; C-SPACE или 0
Как передатчик узнают о длительности каждого бита? Действительно, и передатчик, и приемник должны знать его длительность или детектирование битов будет невозможно. Длительность каждого бита определяется генераторами тактовых импульсов приемника и передатчика. Отметим, однако, что генераторы в приемнике и передатчике должны иметь одну и ту же частоту, но не требуется, чтобы они были синхронизированы. Выбор частоты генератора зависит от скорости передачи в бодах, которая означает число изменений состояния линии каждую секунду. Номинально тактовая частота «16‑кратная скорость передачи в бодах» означает, что линия проверяется достаточно часто для надежного распознавания стартового бита.
Существует одно обычное состояние линии, которое иногда используется для привлечения внимания приемника. Нормальным состоянием линии является MARK и начало символа определяется переходом SPACE. Если линия находится в состоянии SPACE в течение периода времени большем, чем время, которое она затратила бы на получение всех битов символа, тогда мы говорим, что наступило состояние BREAK. В кодах ASCII отсутствует представление BREAK – это означает, что линия «умерла» на непродолжительный промежуток времени, который составляет BREAK.
Ранее мы упоминали, что бит контроля четности полезен для обнаружения ошибок. Например, если выбрана проверка на четность, этот бит устанавливается таким образом, что общее число единиц в текущем слове является четным. В приемнике четность вычисляется заново и сравнивается с битом контроля четности. Если они не равны, то приемник сообщает, что имеет место ошибка четности. Главный недостаток обнаружения ошибки посредством проверки на четность заключается в том, что можно только обнаружить ошибки, которые влияют на один единственный бит. Например, битовая комбинация 0100 0001 0, переданная восемью битами с проверкой на четность, может измениться на 0100 01110, однако приемник не обнаружит ошибку, так как проверка на четность выполняется.
В дополнение к квитированию установления связи посредством аппаратных сигналов RTS/CTS, для достижения управления потоком с использованием программного обеспечения применяются специальные управляющие символы ASCII. Управлять потоком необходимо ввиду того, что иногда либо передатчик либо приемник не могут поддерживать скорость передачи и они должны иметь возможность информировать другую сторону о необходимости остановки на время, требуемое для того, чтобы отставшая сторона смогла догнать другую.
Предположим, что приемник имеет буфер для хранения поступающих символов. Как только буфер после заполнения закрывается, приемник может послать символ XOFF передатчику, сигнализируя, что передача должна быть приостановлена. Конечно, передатчик должен понять значение XOFF и прекратить передачу символов. Затем, когда приемник обработает символы и буфер освободится, тогда посылается символ XON, показывающий, что передача может быть продолжена. Эта схема управления потоком широко применяется ввиду ее простоты. Большинство связных программ предоставляют возможность дуплексной связи с управлением потоком, основанном на применении символов XON/XOFF.
... также невысока и обычно составляет около 100 кбайт/с. НКМЛ могут использовать локальные интерфейсы SCSI. Лекция 3. Программное обеспечение ПЭВМ 3.1 Общая характеристика и состав программного обеспечения 3.1.1 Состав и назначение программного обеспечения Процесс взаимодействия человека с компьютером организуется устройством управления в соответствии с той программой, которую пользователь ...
... первичной или первичной вместе со вторичной или только вторичной И. Если это - итог обработки информации, решения задачи, то такая информация называется результативной, результирующей. В процессе решения задач возникает промежуточная информация, которая часто в автоматизированных системах играет самостоятельную роль, определения направления путей завершения решения задачи. Результатная информация ...
еоценить значение МП и микроЭВМ при создании автоматизированных средств измерений, предназначенных для управления, исследования, контроля и испытаний сложных объектов. Развитие науки и техники требует постоянного совершенствования средств измерительной техники, роль которой неуклонно возрастает. Основные понятия и определения Понятия и определения, используемые в измерительной технике, ...
... питания, блока сопряжения с компьютером, компьютер, индикатор. Блок – схема радиоприемника представлена на рисунке.2.1. Рисунок 2.1 - Структурная схема дистанционного комплекса контроля функционального состояния 1 – приемник; 2 – дешифратора; 3 – детектора; 4 – усилителя; 5 – усилителя вертикального отклонения; 6 – электронно-лучевой трубки; 7 – задающего генератора ...
0 комментариев