3.2 Расчет параметров обратного канала

Вместе с прямым каналом передачи возможно применение обратного канала связи с ЧМ и скоростью 75 бод.

Частота передачи двоичной единицы для обратного канала f1= 390 Гц, а частота передачи двоичного нуля f0= 450 Гц (справочные данные).

Допустимое отклонение характеристических частот номинального значения для обратного канала ±4 Гц (справочные данные).

Длительность единичного элемента для обратного канала:

t0 = 1/V = 1/75 = 13 (мс) (3.2.1)

где V – скорость передачи обратного канала.

Отношение несущей частоты к модулирующей для передачи по обратному каналу

для «1»: f1 / fмод = 390 / 75 = 5,2 (3.2.2)

для «0»: f0 / fмод = 450 / 75 = 6 (3.2.3)

Так как отношения больше 3, то «отраженный спектр» при передаче отсутствует. Несущая частота, вырабатываемая генератором:

Fcp = (f1 окс + f0 окс) / 2 = (390 + 450) / 2 = 420 Гц (3.2.4)

Требуемая ширина пропускания Dfпф окс фильтров передачи определяется по формуле:

Dfпф окс = 1,42×В = 1,42×75 = 107 Гц (3.2.5)

С учетом допуска на временную и температурную нестабильность параметров фильтра берем Dfпф окс = 120 Гц (то есть на 10 % больше обычного).

Тогда полоса пропускания фильтра будет

Dfпф окс = (420 – 120/2; 420 + 120/2)=(360-420) Гц (3.2.6)

Вероятность ошибочного приема единичных элементов Роп вычисляется по следующей формуле

Роп = 0,5× (tпр×vпр)/3600×t0×В = 0,5×5×10-3×8/3600×75 = 5,6×10-6 (3.2.7)

где tпр – средняя длительность перерывов в долях от t0

vпр – интенсивность перерывов.

Максимально допустимая вероятность ошибок приема при В = 75 бод (P0 = 10-4).

Максимально допустимая вероятность ошибок на выходе УПС при воздействии флуктуационных помех

Роф < Р0 – Роп (3.2.8)

Роф < 10-4 – 5,5×10-6 = 0,95×10-5

3.3 Разработка передающей части УПС

 

Структурная схема передающей части УПС изображена на рисунке 3.3.1


Рисунок 3.3.1 – Структурная схема передающей части УПС

Полосы пропускания полосовых фильтров ПФ1 и ПФ2, частоты генераторов Г1 и Г2 рассчитаны в пункте 3.1. Выберем модуляторы М1 и М2 и рассчитаем их параметры.

В настоящее время в УПС применяются в основном модуляторы ЧМ-сигналов, которые называют цифровыми. Они построены на основе цифровых элементов. Использование опорного генератора, стабилизированного кварцем, и элементов цифровой техники позволяет строить схемы модуляторов, обладающих высокой временной и температурной стабильностью и малой зависимостью параметров генерируемых сигналов от колебаний напряжения источника питания.

Модуляторы, построенные по принципу цифровых, имеют ряд недостатков: сравнительно широкий спектр прямоугольных ЧМ-сигналов, что вынуждает применять сложные ФНЧ высокого порядка; разрыв фазы ЧМ-колебаний, вызываемый изменением информационного сигнала в случайные моменты времени по отношению к окончанию периода колебания на выходе управляемого делителя. Схемы синхронизации являются громоздкими и вызывают дополнительные краевые искажения модулированных сигналов. Более перспективными являются ЧМ-модуляторы со ступенчатой аппроксимацией синусоидального сигнала. В схеме такого модулятора имеется функциональный цифроаналоговый преобразователь (ФЦАП), вход которого соединен с выходом управляемого делителя частоты (УДЧ), а его выход – с ФНЧ. Структурная схема ЧМ-модулятора со ступенчатой аппроксимацией синусоидального сигнала и временные диаграммы его работы представлены на рисунке 3.3.2, а, б. Синусоидальный сигнал формируется kст ступеньками напряжения. Как видно из временной диаграммы, переключение частоты происходит плавно, а краевые искажения сигналов на выходе такого модулятора в kст меньше, чем в модуляторах без ФЦАП. Так как для аппроксимации синусоиды используется четное число ступенек kст , то в спектре такого сигнала будут только нечетные гармоники, ближайшей после первой гармоники будет (kст -1)-я гармоника, следующей – (kст +1)-я и т.д.

а)

б)

 

Рисунок 3.3.2 – ЧМ–модулятор со ступенчатой аппроксимацией сигнала: а – структурная схема; б – временные диаграммы

Коэффициент искажения синусоиды за счет аппроксимации Ки определяется на основании спектрального анализа:

Kи = 2π/( kст -) (3.3.1)

Так как коэффициент искажения синусоидального сигнала должен быть не более 12%, определим необходимое число ступенек аппроксимирующего сигнала

kст ≥ 2π/(Ки ) = 2π/(0,12 ) = 15,1 (3.3.2)

Округлим kст до ближайшего большего целого четного числа: kст = 16.

Количество ступенек сигнала для прямого и обратного каналов совпадают. Высота i–й ступеньки аппроксимированной синусоиды в относительных единицах определяется по формуле:

Ui = sin [ 360 (i+0,5) / kст ], i = 0,1,2,…, ( kст - 1 ) (3.3.3)

Рассчитав данные значения, построим ступенчатую аппроксимацию синусоидального сигнала, изображенную на рисунке 3.3.3.

Рисунок 3.3.3 – Ступенчатая аппроксимация синусоидального сигнала

При использовании ИМС более высокой степени интеграции, а также в микропроцессорных УПС для формирования синусоидальных сигналов целесообразно использовать построенное запоминающее устройство (ПЗУ) и цифроаналоговый преобразователь (ЦАП). Обычно каждый из этих функциональных узлов выполняется в виде отдельной ИМС. Схема преобразования цифровой последовательности в синусоидальный сигнал приведена на рис 3.3.4. Адресная шина ПЗУ подключается к выходам двоичного счетчика СТ2, вход которого соединен с выходом УДЧ модулятора, либо к адресной шине микропроцессора УПС. В ячейки ПЗУ в цифровом виде заносятся значения напряжений синусоиды, соответствующие своим фазовым углам ∆φ (см. рис. 3.3.3) Количество слов, хранимых в ПЗУ, равно kст . Емкость ПЗУ можно уменьшить до kст/4, при этом существенно усложнится схема формирования адресов. Разрядность слова ПЗУ np зависит от точности воспроизведения ступенчатого напряжения. На практике достаточно принять np=8 с учетом знакового разряда, что обеспечивает погрешность формирования напряжения менее 1%.

Рисунок 3.3.4 – Цифровой формирователь синусоидальных сигналов на основе ПЗУ

В микропроцессорных УПС адресации ПЗУ осуществляется программным способом. Время нахождения адреса ta на соответствующей шине микропроцессора определяется программой и зависит от частоты формируемой синусоиды fi вых выходного сигнала

ta = 1/( fi вых kст) (3.3.4)


Информация о работе «Проектирование аппаратуры передачи данных»
Раздел: Информатика, программирование
Количество знаков с пробелами: 53106
Количество таблиц: 2
Количество изображений: 10

Похожие работы

Скачать
84040
11
5

... служит для безопасной передачи данных Рисунок 2.4 - Внешний модема типа ADSL 3. Экономический расчет Целью экономического расчета дипломного проекта является усовершенствование модема путем защиты передачи данных, определение величины экономического эффекта от использования разработанной программы защиты передачи данных "Северодонецкая автошкола" качественная и количественная оценка ...

Скачать
109396
14
31

... порту в терминал. Рисунок 4.4. - Блок - схема передачи данных в терминал. Далее после окончания приема или передачи данных , в терминал передается команда "устройство свободно", что разрешает дальнейшие запросы на обмен данными. Перезагрузка программы в память и инициализация происходят при нажатии кнопки RESET. Полная блок-схема алгоритма предоставленна в приложении. Данный алгоритм ...

Скачать
46280
6
13

... (САРН) располагают в одном ряду с той аппаратурой, которая требует стабилизированного напряжения питания (например: СУГО). 5 Схема связи на участке железной дороги На участке железной дороги с помощью аппаратуры К-60П организуются следующие виды связи: Транзит первой первичной группы Выход на комплекты дальнего набора Выход на аппаратуру передачи данных Выход на ручную междугороднюю станцию ...

Скачать
29964
10
15

... F, которое учитывает потери в застройке . Расчитываем длину волны, распространяющейся в радиоканале Расчитываем высоту подъёма антенны радиопередатчика 5. ПРОЕКТИРОВАНИЕ УСТРОЙСТВ СУММИРОВАНИЯ И РАЗДЕЛЕНИЯ СИГНАЛОВ НА ВХОДЕ АНТЕННО-ФИДЕРНОГО ТРАКТА РАДИОРЕЛЕЙНЫХ И СПУТНИКОВЫХ УСТРОЙСТВ При передаче сигнал с частотой f’4 от передатчика ПД4 (рис. 5.1) через полосовой фильтр ...

0 комментариев


Наверх