8. Завдання №8
8.1 Задача 8.1 (вар. №7)
Розв’язати рівняння 2-ї степені
Розв’язання.
> (3*x-1)*(x+2)=20;
Задаємо рівняння eq
> eq:=(3*x-1)*(x+2)-20=0;
Розв'язуємо рівняння відносно змінної x
> solve(eq,{x});
Зробимо перевірку: підставляємо розв'язок x=2 в рівняння eq
> subs(x=2,eq);
Підставляємо розв'язок x=-11/3 в рівняння eq
> subs(x=-11/3,eq);
Відповідь: 2; -11/3.
8.2 Задача 8.2 (вар. №7)
Розв’язати рівняння 2-ї степені
Розв’язання.
> 30/(x^2-1)-13/(x^2+x+1)=(7+18*x)/(x^3-1);
Задаємо рівняння eq
> eq:=30/(x^2-1)-13/(x^2+x+1)-(7+18*x)/(x^3-1)=0;
Розв'язуємо рівняння відносно змінної x
> solve(eq,{x});
Зробимо перевірку: підставляємо розв'язок x=-4 в рівняння eq
> subs(x=-4,eq);
Підставляємо розв'язок x=9 в рівняння eq
> subs(x=9,eq);
Відповідь: -4; 9.
9. Завдання №9
9.1 Задача 9.1 (вар. №7)
Привести наступний вираз до найпростішого виду
Розв’язання.
> sqrt(a)/(sqrt(a)-sqrt(b))-sqrt(b)/(sqrt(a)+sqrt(b));
Позбавляємося від ірраціональності в знаменниках
> rationalize(a^(1/2)/(sqrt(a)-sqrt(b)))-rationalize(b^(1/2)/(sqrt(a)+sqrt(b)));
Розкриваємо дужки
> expand(%);
Спрощуємо
> simplify(%);
Відповідь:
9.2 Задача 9.2 (вар. №7)
Привести наступний вираз до найпростішого виду
Розв’язання.
> 1/(a+sqrt(a^2-b^2))+1/(a-sqrt(a^2-b^2));
Позбавляємося від ірраціональності в знаменниках
> rationalize(1/(a+sqrt(a^2-b^2)))+rationalize(1/(a-sqrt(a^2-b^2)));
Спрощуємо вираз
> simplify(%);
Відповідь:
10. Завдання №10
10.1 Задача 10.1 (вар. №7)
Привести до раціональному виду наступний вираз
Розв’язання.
> n/(a^(1/3)-b^(1/3));
Позбавляємося від ірраціональності в знаменнику
> rationalize(%);
Відповідь: .
10.2 Задача 10.2 (вар. №7)
Привести до раціональному виду наступний вираз
Розв’язання.
> a/(2+sqrt(2)+sqrt(3)+sqrt(6));
Позбавляємося від ірраціональності в знаменнику
> rationalize(%);
Розкладаємо на множники
> factor(%);
Відповідь:
11. Завдання №11
Скласти програму, яка видає на печать таблицю значень для
Розв’язання.
> for n from 1 to 50 do n^3 end do;
Список використаної літератури
1. Аладьев В.З., Богдявичюс М.А. Решение физико-технических и математических задач с пакетом Maple V. В.:Техника, 1999. – 686 с.
2. Васильев А.Н. Maple 8. СПб.:Диалектика, 2003. – 352 с.
3. Дьяконов В.П. Maple 9 в математике, физике и образовании. М.:СОЛОН-Пресс, 2004. – 688 с.
4. Дьяконов В.П. Maple 8 в математике, физике и образовании. М.:СОЛОН-Пресс, 2003. – 656 с.
5. Матросов А.В. Maple 6. Решение задач высшей математики и механики. – СПб.: БХВ-Петербург, 2001. – 528 с.
6. Сдвижков О.А. Математика на компьютере: Maple 8. М.: СОЛОН-Пресс, 2003. – 176с.
... може бути компетентною або некомпетентною в певних питаннях, тобто мати компетентність (компетентності) у певній галузі діяльності. Саме тому, одним із результатів навчання курсу «Застосування ІКТ у навчальному процесі з математики» вбачається формування в майбутніх вчителів відповідних ключових фахових компетентностей. Зазначене вище наштовхнуло на дослідження компетентностей: внаслідок чого ...
... нтуватися на використання підручників [53; 54; 5]. У класах фізико-математичного спрямування доцільно орієнтуватись на використання підручників [53; 54; 5; 1]. РОЗДІЛ 2 ОСОБЛИВОСТІ ВИВЧЕННЯ МАТЕМАТИКИ У ПРОФІЛЬНИХ КЛАСАХ В СУЧАСНИХ УМОВАХ 2.1. ОСНОВНІ ПОЛОЖЕННЯ ПРОФІЛЬНОЇ ДИФЕРЕНЦІАЦІЇ НАВЧАННЯ МАТЕМАТИКИ Математика є універсальною мовою, яка широко застосовується в усіх ...
... САПР? 14. Які основні принципи створення САПР Вам відомі? 15. Які види САПР Вам відомі? 16. Які функції повинні виконувати інтегровані САПР? 17. Назвіть основні особливості технології автоматизованого проектування. 18. Який комплекс вимог пред'являє до САПР реалізація технології автоматизованого проектування? 19. Назвіть найбільш характерні відмітні особливості ГСАПР. 20. Дайте ...
0 комментариев