2.1.3 Воксельні моделі
Класичні воксельні (voxel) моделі являють собою тривимірний масив, кожному елементу якого зіставлений колір й коефіцієнт прозорості. Такий масив задає наближення об’єкта з точністю, обумовленої обмеженням масиву.
Воксельні (або об'ємними) методами візуалізації називаються методи візуалізації тривимірних функцій, у дискретному випадку заданих, наприклад, за допомогою описаного вище масиву.
Типові методи воксельної візуалізації обробляють масив, і формують проекцію кожного його елемента на видову площину. Вихідний масив являє собою регулярну структуру даних, що істотно використовується в методах візуалізації. Звичайно елемент масиву з’являється на екрані у вигляді деякого примітиву, так званого відбитку (footprint) або сплату (splat). Різні методи відрізняються способами обчислень форми й розмірів зображення[3].
Обсяги даних у воксельних поданнях значні, навіть для невеликих моделей. Єдиною реальною можливістю працювати зі складними об'єктами є використання деревоподібних ієрархій. У роботі Лаур Д. та Ханрахана П. на основі вихідного масиву будується багатомасштабне подання у вигляді восьмеричного дерева. Кожен вузол дерева містить усереднене значення кольорів і прозорості всіх своїх нащадків. Крім того, кожен вузол дерева містить змінну, що показує середню помилку, асоційовану з даним вузлом. Ця змінна показує помилку, що виникає при заміні оригінального набору вокселів в даній області простору на константну функцію, рівну середньому значенню кольорів всіх нащадків даного вузла. Надалі це значення використовується для керування якістю візуалізації й рівнем деталей.
Незважаючи на те, що воксельні методи орієнтовані в першу чергу на наукову візуалізацію, багато ідей, що використовується в цих методах, знаходять своє застосування в інших областях. Наприклад, ідея решітки використається при роботі із точковими поданнями, а також з поданнями, заснованими на зображеннях.
Переваги даного алгоритму: простота регулярної структури; апаратна підтримка.
Недоліки даного алгоритму: великий обсяг даних, тому необхідно використовувати спеціальні багатомаштабні структури для роботи зі складними об'єктами; використовувані структури даних зберігають внутрішньої, невидимі, частини об’єкта, тоді як для поставленого завдання достатній опис поверхні.
2.1.4 Моделі, засновані на зображеннях
Моделювання й візуалізація, засновані на зображеннях (Image-Based Modeling and Rendering, далі IBMR) являють собою альтернативний підхід до рішення завдань синтезу зображення [4].
Такі методи не використовують проміжні структури даних, і синтезують підсумкову картинку, ґрунтуючись на вихідних даних - як правило, зображеннях або зображеннях з глибиною. Більш формально метод візуалізації, заснований на зображеннях, можна визначити як алгоритм, що визначає, як по кінцевому наборі вихідних (reference) зображень сцени одержати нове, результуюче (resulting) зображення для заданої точки спостереження й заданих параметрів віртуальної камери.
Структури даних, використовувані для такого алгоритму візуалізації, можуть сильно відрізнятися, незмінним залишається орієнтація методів на безпосередню роботу з вихідними даними, що робить методи IBMR концептуально близькими до поставленого завдання.
Зображення з картами глибини
Однієї з найпростіших структур даних, використовуваних в IBMR є набори зображень із картами глибини. Визначимо пари зображення плюс карта глибини як кольорове зображення, якій зіставлене напівтонові зображення відповідного розміру, інтенсивність у кожній точці якого відповідає відстані від камери до поверхні об’єкта.
Примітною властивістю подання є те, що сучасні дистанційні сканери дозволяють прямо одержувати дані у вигляді карт глибини, а найбільш дорогі моделі одержують і колірну інформацію про об'єкт. Отже, таке подання максимально підходить для роботи зі складними реальними даними, а завдання полягає в розробці методу візуалізації.
Варто помітити, що пари зображення плюс карта глибини однозначно визначає дискретне наближення поверхні в тривимірному просторі, при цьому якість наближення залежить від роздільної здатності зображення й обраного положення камери.
Одна карта глибини зберігає тільки видиму частину об’єкта, тому для відновлення повного об’єкта необхідно використати набір з декількох карт глибини, залежно від складності сцени (рис. 2.2).
Рис. 2.2. Створення карти глибин по пікселям
Було запропоновано досить багато методів візуалізації й використання подібних структур даних. Наприклад, Леонардо-Макмиллан використовує систему обробки зображень для деформації (warping) вихідного зображення з обліком вихідної й результуючої (поточної) камер таким чином, щоб результат, відображений на екрані, створював ілюзію тривимірності [5].
У роботі Мартіна Олів’єрі також використовується деформація зображень, однак результатом роботи алгоритму є текстури створені з карт глибини для поточного положення віртуальної камери й накладені на просту (плоску) полігональну сітку - так називані рельєфні текстури (relief textures) [6].
Однак ці методи мають серйозні недоліки. З одного боку, в умовах недостатньої точності вихідних даних й або великому відхиленні віртуальної камери від вихідної, у результуючому зображенні можлива поява дірок (holes), тобто погіршення якості візуалізації. З іншого боку, результатом роботи дистанційних сканерів часто є набори даних з 50-70 карт глибини, які в описаних вище алгоритмах будуть оброблятися сепаратно, створюючи додаткові погрішності візуалізації. Крім того, час візуалізації однієї карти глибини розміром 512x512 по методу Олів’єрі на комп'ютері із процесором Pentium III 866 і відео картою NVidia GeForce2 Pro становить близько 70 мс. Обробка 50-ти зображень займе біля 4-х секунд.
Іншим можливим варіантом є пряме відновлення тривимірних координат семплів (sample) і їхня візуалізація прямо за допомогою проекції на видову площину віртуальної камери. Такий підхід дозволяє використати апаратне прискорення тому, що пікселі вихідних зображень у просторі можуть бути представлені крапками або багатокутниками. Однак, на практиці такий метод працює тільки для досить невеликих наборів даних.
Головною перешкодою для створення багатошарових методів візуалізації карт глибини є відсутність чіткої просторової структури пари зображення плюс карта глибини.
Багатошарові зображення із глибиною
Останнім часом було почато кілька спроб використання багатомасштабних методів разом із заснованими на зображеннях поданнями. Одна з них описана в роботі Чанга й Бішопа й як базове подання використовує багатошарові зображення із глибиною (Layered Depth Images - LDI), у перше описані в статі Гортлера С. Солена М. (Візуалізація багатошарових глибин зображення
Багатошарові зображення із глибиною зберігають для кожного пікселя карти кольорів всі перетинання відповідного променя з моделлю. Одного багатошарового зображення досить для опису повного об’єкта (рис. 2.3).
Рис. 2.3. Багатошарове зображення
Відмінність багатошарових зображень із глибиною від простих полягає в тім, що одне зображення дозволяє зберігати інформацію не тільки про видиму з даної вихідної камери частини поверхні об’єкта, а повну інформацію про об'єкт. По суті, LDI – це тривимірна структура даних, що представляє собою прямокутну матрицю, кожним елементом якої є список крапок. Кожна крапка містить глибину (відстань до опорної площини) і атрибути, у найпростішому випадку – кольори. Для подання всього об’єкта можна використати єдине багатошарове зображення, що використовує шість перспективних LDI з єдиним центром проекції (3).
Така структура дозволяє проводити візуалізацію як описаними вище методами Макмілана й Олів’єрі, так і просто використати збережену інформацію як скупчення точок і відображати його прямо за допомогою одного із графічних API (наприклад, OpenGL).
З використанням LDI-подібних структур зв'язані деякі обмеження на візуалізацію, обумовлені тим, що всі крапки в зображенні орієнтовані на одну базову площину. Крім того, LDI не можуть бути прямо отримані із пристроїв введення й для створення такої структури необхідне використання додаткових алгоритмів, наприклад, деформуючи зображення із глибиною по методу Макмілана таким чином, щоб площина результуючого зображення збігалася з базовою площиною LDI. Відзначимо, що процес формування LDI відбувається до безпосередньої візуалізації, і тому його ефективність не відбивається на швидкості візуалізації.
Однак LDI не дозволяє прямо відображати об'єкт із різними ступенями деталізації. Але була почата спроба створити багатосштабне подання на основі LDI з використанням так називаного дерева LDI (LDI tree).
Сутність методу полягає в наступному: замість одного LDI формується восьмеричне дерево, у кожному вузлі якого перебуває свій LDI і посилання на інші вузли, у яких перебуває LDI меншого розміру (в одиницях сцени), але того ж дозволу. Також для кожного вузла є обмежуючий паралелепіпед.
Всі LDI у дереві мають однаковий дозвіл. Висота дерева залежить від дозволу LDI. Чим менше дозвіл LDI, тим більше висота дерева. Кожен LDI у дереві містить інформацію тільки про ту частину сцени, що втримується в його обмежуючому паралелепіпеді. Обмежуючі паралелепіпеди вузлів наступного рівня дерева виходять дробленням обмежуючого паралелепіпеда поточного рівня на вісім рівних частин (рис. 2.4).
Рис. 2.4. Дерево із LDI
Дерево LDI дозволяє вирішувати проблему візуалізації дуже великих структур даних, використовуючи наступну ідею: при візуалізації немає необхідності обробляти нащадків вузла, якщо сам вузол забезпечує достатній ступінь деталізації. Автори використають наступний критерій ступеня деталізації: вважається, що LDI забезпечує достатній рівень деталізації, якщо "відбиток" (footprint, splat) його пікселя на результуючому зображенні покриває не більше одного пікселя екрана.
З іншого боку, використання того ж підходу дозволяє доповнити дані низької роздільної здатності штучно відновленими додатковими рівнями дерева, створюючи ефект фільтрації одержуваного зображення.
Візуалізація виробляється за допомогою обходу дерева від кореня до листів і малювання LDI методом Макмілана. При цьому обробка всіх вузлів дерева не потрібно, і обхід вітки дерева завершується на першому LDI, що забезпечує достатню точність.
Алгоритм має високу якість візуалізації, можливість прогресивної передачі даних. Однак його ефективність, як за часом, так і по пам'яті, досить низька. Час одержання зображення в дозволі 512х512 для LDI середньої складності на графічній станції SGI Onyx2 (16Гбайт оперативної пам'яті, 32 процесора MIPS R1000 250Mhz) зайняло більше трьох секунд.
Переваги даних алгоритмів: орієнтація на проблемну область; легкість одержання й моделювання.
Недоліки даних алгоритмів: складні, не завжди якісні методи візуалізації; труднощі з підтримкою багатомасштабності; робота тільки з дифузійними поверхнями.
... або напрямоку камери, то параметр повинен бути GL_PROJECTІON. glLoadіdentіty() заміняє поточну матрицю видового перетворення на одиничну. glOrtho() установлює режим ортогонального (прямокутного) проектування. Це значить, що зображення буде рисуватися як в ізометрії. 6 параметрів типу GLdouble (або просто double): left, rіght, bottom, top, near, far визначають координати відповідно лівої, право ...
... . Від цього залежатиме, яким чином у подальшому слід будувати процес навчання в початкових класах загальноосвітньої школи. Розділ 2. Формування у молодших школярів навичок виконання зображень птахів і тварин 2.1 Методика виконання зображень птахів і тварин у початкових класах Тваринний світ дуже цікавий і різноманітний за формою і кольором. У початкових класах ці форми малюють найчастіше ...
... багато в чому залежить від висоти і конструкції стільця, нахилу робочого стола, розміщення інструментів на столі, рівня освітленості тощо. Звичайно, ці фактори в школі регулювати важко, особливо тоді, коли заняття з петриківського розпису проводяться у звичайних класах. Учитель повинен знати основні вимоги, які мають бути створені для нормального виконання графічних робіт. Так, висоту парти і сті ...
... дзеркала над демонстраційною плитою протягом багатьох років з успіхом використовуються в кулінарних училищах. 2.2 Експериментальна перевірка ефективності застосування технічних засобів навчання у навчально-виховному процесі при вивченні дисципліни «Кулінарія» Для перевірки результативності засвоєння знань студентами Чернігівського комерційного технікуму з використанням на заняттях технічних ...
0 комментариев